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Algebraic Varieties over Finite Fields

Let X be an (irreducible) projective algebraic variety in Pm defined
over Fq of dimension n. Let pn := |Pn(Fq)| = qn + qn−1 + · · ·+ 1.

Lang-Weil Inequality (1954). If X has degree d , then∣∣∣ |X (Fq)| − pn

∣∣∣ ≤ (d − 1)(d − 2)qn−(1/2) + Cqn−1,

where C is a constant depending only on m, n and d .
Deligne’s Inequality (1973). If X is a nonsingular complete
intersection, then ∣∣∣ |X (Fq)| − pn

∣∣∣ ≤ b′n qn/2.

where b′n = bn − εn is its primitive nth Betti number of X
(where εn = 1 if n is even and εn = 0 if n is odd).

Remark: If X has multidegree d = (d1, . . . , dr ), then b′n equals

(−1)n+1(n + 1) +
m∑
c=r

(−1)m+c

(
m + 1

c + 1

) ∑
ν1+···+νr=c
νi≥1 ∀i

dν11 · · · d
νr
r
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Extensions and Generalizations

Some extensions and improvements of these results are known.
Namely, an effective version of Lang-Weil inequality with an
explicit bound on the constant C appearing therein, and an
extension of Deligne’s inequality for possibly singular complete
intersections are known. [cf. G-Lachaud (MMJ, 2002)]. However,
all these results assume that X is irreducible.

Question: What is X is possibly reducible? In other words, do we
have good estimates for |X (Fq)| when X is a projective algebraic
set, or an affine algebraic set?

Simplest Case: Ore’s Inequallity (1933). If X is an affine
hypersurface in Am defined by a polynomial f (x1, . . . , xm)with
coefficients in Fq, then it is not difficult to show that

|X (Fq)| ≤ dqm−1.

The bound dqm−1 is trivial if d ≥ q and it is attained if d < q,
e.g., we can take f (x1, . . . , xm) = (x1 − a1) · · · (x1 − ad), where
a1, . . . , ad are distinct elements of Fq.
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The Case of a Projective Hypersurface

Let F ∈ Fq[x0, x1, . . . , xm] be a nonzero homogeneous polynomial
of degree d and let X = V (F ) be the corresponding hypersurface.

Natural Guess: |X (Fq)| ≤ dpm−1.

Heuristics: Project X onto Pm−1. There are pm−1 points in Pm−1

and above each of them, there are at most d points on X .

Note that if d > q, then dpm−1 ≥ (q + 1)pm−1 ≥ pm and so the
bound is interesting only when d ≤ q. In this case, we may be
tempted to assume that the bound is optimum and try the
analogue of the affine example, namely, the homogeneous
polynomial F (x0, x1, . . . , xm) = (x1 − a1x0) · · · (x1 − adx0),
where a1, . . . , ad are distinct elements of Fq. In this case,

|X (Fq)| = dqm−1 + pm−2.

Note that the RHS is < dpm−1 if d > 1.
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A Conjecture of Tsfasman

M. A. Tsfasman conjectured in the late 1980’s that

If 0 6= F ∈ Fq[x0, x1, . . . , xm] is homogeneous of degree
d ≤ q, then |V (F )| ≤ dqm−1 + pm−2. Consequently,
max{|V (F )| : 0 6= F ∈ Fq[x0, . . . , xm]d} = dqm−1+pm−2.

This was soon proved by J.-P. Serre (Astérisque, 1991) and
independently by A. B. Sørensen (IEEE Trans. Inform. Theory,
1991). Serre’s proof is quite beautiful and proceeds as follows.

Induct on m. The case m = 1 is clear. Suppose m > 1 and
the result holds for smaller values of m.
Let G1, . . . ,Gt be distinct (homogeneous) linear factors of F ,
and let Li = V (Gi ) be the corresponding hyperplanes and

L =
t⋃

i=1

Li .

Note that t ≤ d and L ⊆ V (F ). We now divide the proof in
two cases according as L = V (F ) and L 6= V (F ).
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Serre’s proof of |V (F )| ≤ dqm−1 + pm−2

Case 1. L = V (F ).
In this case we induct on t. The case t = 0 is trivial, whereas if
t = 1, then

|L| = |L1| = pm−1 = qm−1 + pm−2 ≤ dqm−1 + pm−2.

Suppose t > 1. Then

∣∣∣ t⋃
i=1

Li

∣∣∣ =
∣∣∣ t−1⋃
i=1

Li

∣∣∣+ |Lt | −
∣∣∣ t−1⋃
i=1

Li ∩ Lt

∣∣∣
≤

[
(t − 1)qm−1 + pm−2

]
+ pm−1 − pm−2

= tqm−1 + pm−2

≤ dqm−1 + pm−2,

as desired.
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Serre’s proof of |V (F )| ≤ dqm−1 + pm−2 Contd.

Case 2. L 6= V (F ).
In this case, there exists P ∈ V (F ) such that P 6∈ L.

If H ∈ P̂m (i.e., H is a hyperplane in Pm) with P ∈ H, then
F |H 6= 0 and hence by induction hypothesis,∣∣∣V (F ) ∩ H

∣∣∣ ≤ dqm−2 + pm−3.

Consider the incidence set

I =
{

(P ′,H) : P ′ ∈ V (F ) \ {P}, H ∈ P̂m with P,P ′ ∈ H
}

and count it in two different ways as follows.

|I| = (|V (F )| − 1) pm−2
|I| = pm−1 (|V (F ) ∩ H| − 1).

Consequently, (|V (F )| − 1) pm−2 ≤ pm−1
(
dqm−2 + pm−3 − 1

)
.
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Serre’s proof of |V (F )| ≤ dqm−1 + pm−2 Contd.

Since (|V (F )| − 1) pm−2 ≤ pm−1
(
dqm−2 + pm−3 − 1

)
,

|V (F )| ≤
pm−2 + pm−1

(
dqm−2 + pm−3 − 1

)
pm−2

=
−qm−1 + dqm−2pm−1 + pm−1pm−3

pm−2

=
−qm−1 + dqm−2(qpm−2 + 1) + (qpm−2 + 1)

(pm−2−1)
q

pm−2

= dqm−1 + pm−2 −
(q + 1− d)qm−2

pm−2

< dqm−1 + pm−2.

Remark: The above proof shows that the bound is attained only
when V (F ) is a union of hyperplanes; in fact, a union of d
hyperplanes with an (m − 2)-dimensional projective linear space in
common.

Sudhir R. Ghorpade Number of Points of Algebraic Sets over Finite Fields



Several homogeneous polynomials in several variables

It turns out that one might hope to find an extension of Serre’s
Theorem for the number of common zeros in Pm(Fq) of several
homogeneous polynomials in m + 1 variables, provided they all
have the same degree d . It is also natural to assume that the
polynomials are linearly independent. This forces, of course, that
the number of polynomials is ≤ dimFq Fq[x0, x1, . . . , xm]d =

(d+m
d

)
.

Conjecture (Tsfasman-Boguslavsky)

Let F1, . . . ,Fr ∈ Fq[x0, x1, . . . , xm] be linearly indep. homogeneous
polynomials of degree d < q− 1 and V = V (F1, . . . ,Fr ) be the set
of their common zeros Pm(Fq). Let (ν1, . . . , νm+1) be the r -th
tuple in the list of exponent vectors of monomials of degree d in
m + 1 variables, ordered lexicographically in descending order, and
let j = min{i : 1 ≤ i ≤ m + 1 and νi 6= 0}. Then

|V (Fq)| ≤ pm−2j +
m∑
i=j

νi (pm−i − pm−i−j).
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Tsfasman-Boguslavsky Conjecture (TBC)

The conjecture, in fact, not only gives an upper bound on #V , but
claims that this is the best bound possible. In other words,

er (d ,m)

:= max{|V (F1, . . . ,Fr )| : F1, . . . ,Fr ∈ Fq[x0, x1, . . . , xm]d lin. indep.}

= pm−2j +
m∑
i=j

νi (pm−i − pm−i−j) for d < q − 1,

where (ν1, . . . , νm+1) and j are as above.
Example: Clearly, (d , 0, 0, . . . , 0) is the largest (m + 1)-tuple of
exponent vectors of monomials in (m + 1)-variables of degree d .
Thus if r = 1, then ν1 = d , νi = 0 for i > 1 and j = 1 so that

e1(d ,m) = pm−2 + d(pm−1 − pm−2),

exactly as in Serre’s bound. In case r = 2 and d > 1, then
(d − 1, 1, 0, . . . , 0) is the second tuple and the bound becomes

e2(d ,m) = (d − 1)qm−1 + qm−2 + pm−2.

Sudhir R. Ghorpade Number of Points of Algebraic Sets over Finite Fields



Another Estimate for Projective Algebraic Sets

Couvreur (PAMS, 2016) settled the so called Ghorpade-Lachaud
Conjecture, which can be viewed as a counterpart of the TBC.

Theorem (Couvreur)

Let X be a nondegenerate projective algebraic set in Pm defined
over Fq. Suppose the irreducible components of X have
dimensions n1, . . . , nt and degrees δ1, . . . , δt , respectively. If
ni < m for all i = 1, . . . , t, and if n := max{n1, . . . , nt}, then

|X (Fq)| ≤ p2n−m +
t∑

i=1

δi
(
pni
− p2ni−m

)
(1)

In particular, if X is equidimensional of dim n and degree δ, then

|X (Fq)| ≤ δpn − (δ − 1)p2n−m = δ(pn − p2n−m) + p2n−m. (2)

Remark: (2) reduces to Serre’s inequality if codimX = m − n = 1.
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Comparision with Couvreur’s theorem

In general, the hypothesis of TBC is amenable to an easy
verification. In the equidimensional case, the Couvreur bound, say
Cr (m), is often better than the Tsfasman-Boguslavsky bound, say
Tr (d ,m). Suppose X ⊆ Pm is defined by the vanishing of r linearly
independent homogeneous polynomials in m + 1 variables, each of
the same degree d , and n = dim X = m − r so that X is a
complete intersection of degree δ = d r . Assume, for simplicity,
that n ≥ 0, i.e., r ≤ m, and that d > 1, δ ≤ q + 1. Then

Cr (m) ≤ Tr (d ,m).

On the other hand, in the non-equidimensional case, the
Tsfasman-Boguslavsky bound can be better than the Couvreur
bound. For example, if r ≤ m and Q1, . . . ,Qr are quadrics defined
by Qi = x0xi for i = 1, . . . , r , and if V = V (Q1, . . . ,Qr ), then

|V |=Tr (2,m)=pm−1 + qm−r <pm−1 + qm−r + · · ·+ qm−2r+1 =Cr (m).

Thus the two bounds complement each other and neither implies
the other.
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Boguslavsky’s Theorem

Tsfasman-Boguslavsky Conjecture, which dates back to mid to late
1990’s is still open, in general. After Serre bound, the next
significant result was obtained by M. Boguslavsky (Finite Fields
Appl., 1997) where he settled the r = 2 case.

Theorem (Boguslavsky, 1997)

Assume that 1 < d < q − 1. Then

e2(d ,m) = (d − 1)qm−1 + qm−2 + pm−2.

The proof is quite intricate. It uses the Serre bound, reduction to
certain complete intersections, and the use of the following basic
inequality essentially due to G. Lachaud.

If V is an equidimensional projective variety in Pm

defined over Fq of dimension n and degree d, then
#V (Fq) ≤ dpn.
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Affine Case

It turns out that an affine analogue of Tsfasman-Boguslavsky
Conjecture is known, in general. This corresponds of course to the
maximum number of zeros that a system of r polynomial equations
of degree d in Fq[x1, . . . , xm] can have. The answer is given by:

Theorem (Heijnen-Pelikaan, 1998)

Let f1, . . . , fr be linearly independent polynomials of degree d > 1
in Fq[x1, . . . , xm]. Then the maximum number of common zeros in
Am(Fq) that f1, . . . , fr can have is given by

Hr (d ,m) := qm −

(
1 +

m∑
i=1

αm−i+1qi−1

)
,

where (α1, . . . , αm) is the r th tuple among the m-tuples
(β1, . . . , βm) with coordinates from {0, 1, . . . , q − 1} satisfying
β1 + · · ·+ βm ≥ m(q − 1)− d, where the tuples are arranged
lexicographically in ascending order.
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Illustration of Heijnen-Pelikaan Theorem

As a simple illustration of the Heijnen-Pelikaan Theorem, consider
the case r = 1. Then one can see that the first m-tuple satisfying
the conditions of the theorem is

(q − 1− d , q − 1, q − 1, . . . , q − 1).

Hence in this case

Hr (d ,m) = qm −

(
1 +

m∑
i=1

αm−i+1qi−1

)

= qm −

(
1 + (q − 1− d)qm−1 +

m−1∑
i=1

(q − 1)qi−1

)
= dqm−1,

as is to be expected. The proof of the theorem, in general, is quite
involved and uses combinatorial results such as Kruskal-Katona
Theorem.
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Alternative Description of Heijnen-Pelikaan Theorem

It is not difficult to see that

Hr (d ,m) :=
m∑
i=1

βiq
m−i ,

where (β1, . . . , βm) is the rth element in descending
lexicographic order among all m-tuples (γ1, . . . , γm) of
nonnegative integers satisfying γ1 + · · ·+ γm ≤ d .

Let Fq[x1, . . . , xm]≤d denote the Fq-vector space of
polynomials in m variables x1, . . . , xm of degree ≤ d . Define

eAr (d ,m) := max {|Z (f1, . . . , fr )| : f1, . . . , fr ∈ Fq[x1, . . . , xm]≤d lin indep}

Theorem (Heijnen-Pelikaan, 1998; Beelen-Datta, 2018)

For 1 ≤ d < q, m ≥ 1, and 1 ≤ r ≤
(m+d

d

)
,

eAr (d ,m) := Hr (d ,m).
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Another Geometric Viewpoint

Finding the maximum number of common zeros of r linearly
independent homogeneous polynomials of degree d in m + 1
variables over Fq corresponds to finding the maximum number of
Fq-rational points in sections of the Veronese variety

Vd ,m := νd(Pm) ↪→ P(m+d
d )−1

by (projective) linear subspaces of codimension r .

We remark that
one can also consider linear sections of the Grassmann variety

G`,m := {`-dimensional subspaces of Fm
q } ↪→ P(m`)−1.

or related projective algebraic varieties such as Schubert varieties,
determinantal varieties, etc. There are many interesting results and
questions in these directions. That will probably need at least one
more talk. But Those interested may see some of my papers
available below and the references therein:

http://www.math.iitb.ac.in/∼srg/Papers.html
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Progress on TBC

The Tsfasman-Boguslavsky Conjecture, which predicts the exact
value of er (d ,m) for d < q, was open for almost two decades. It
was settled about 5 years ago in the following sense.

Theorem (Joint work with Mrinmoy Datta, Moscow Math J., 2015)

The Tsfasman-Boguslavsky Conjecture is true if d = 2 and
r ≤ m + 1, but it is false, in general. More precisely, if d = 2 and
m > 2, then it is false for at least

(m−1
2

)
values of positive integers

r with m + 1 < r ≤
(m+2

2

)
.

Theorem (Joint work with Mrinmoy Datta, Proc. AMS, 2017)

The Tsfasman-Boguslavsky Conjecture is true for any r ≤ m + 1
and d < q − 1.

The proof of the last theorem uses Serre’s inequality, but not
Boguslavsky’s Theorem, and so we obtain Boguslavsky’s Theorem
as a corollary.

Sudhir R. Ghorpade Number of Points of Algebraic Sets over Finite Fields



Progress on TBC

The Tsfasman-Boguslavsky Conjecture, which predicts the exact
value of er (d ,m) for d < q, was open for almost two decades. It
was settled about 5 years ago in the following sense.

Theorem (Joint work with Mrinmoy Datta, Moscow Math J., 2015)

The Tsfasman-Boguslavsky Conjecture is true if d = 2 and
r ≤ m + 1, but it is false, in general. More precisely, if d = 2 and
m > 2, then it is false for at least

(m−1
2

)
values of positive integers

r with m + 1 < r ≤
(m+2

2

)
.

Theorem (Joint work with Mrinmoy Datta, Proc. AMS, 2017)

The Tsfasman-Boguslavsky Conjecture is true for any r ≤ m + 1
and d < q − 1.

The proof of the last theorem uses Serre’s inequality, but not
Boguslavsky’s Theorem, and so we obtain Boguslavsky’s Theorem
as a corollary.

Sudhir R. Ghorpade Number of Points of Algebraic Sets over Finite Fields



Remarks on the proof of Theorem 1:

The key idea is to use the following:
Theorem [Zanella, 1998] For any integer t, define δt =

(t+2
2

)
. Let

r ≤ δm and k the unique integer with −1 ≤ k < m such that
δm − δk+1 < r ≤ δm − δk . Then for any linear subspace Lr of
codimension r in Pδm−1,

|Vm,2 ∩ Lr | ≤ Zr := pk + bqε−1c, where ε = δm − δk − r .

To show that the TBC is false, in general for d = 2 and r > m + 1,
it suffices to show that Zr < Tr (2,m). This is done for at least(m−1

2

)
values for r with m + 1 < r ≤ δm, provided m > 2.

To show that the [TBC is true when d = 2 and r ≤ m + 1, one has
to show that Zr = Tr (2,m) in this case and give explicit examples
where the bound is attained. The latter is done as follows.

For 1 ≤ r ≤ m, the bound is attained if we take Fi = x0xi for
i = 1, 2, . . . , r . For r = m + 1, the bound is attained if we take

Fi = x0xi for i = 1, 2, . . . ,m and Fm+1 = x2
0 .
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Remarks on the proof of Theorem 2:

Theorem

For 1 ≤ r ≤ m + 1 and 1 < d < q − 1, we have

er (d ,m) = (d − 1)qm−1 + pm−2 + bqm−rc.

The main ingredients in the proof are as follows:

Serre’s inequality

Theorem of Heijnen-Pellikaan

A basic bound due to Lachaud for projective algebraic sets

Characterization of a “coprime close” family of polynomials

Case by case analysis

Explicit constructions of maximal families when r ≤ m + 1.
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What’s next?

Theorems 1 and 2 settle in a way the Tsfasman-Boguslavsky
conjecture. However, the question about the determination of
er (d ,m) still remains open in cases not covered by the earlier
results. Generally speaking, the results obtained thus far do not
yield the exact values of

er (d ,m) whenever m + 1 < r ≤
(m+d

d

)
− d − 1 and

2 < d < q − 1.

er (d ,m) whenever 1 < r ≤
(m+d

d

)
and d ≥ q − 1.

Conjecture (The ”Incomplete Conjecture”)

For 1 < d < q and r ≤
(m+d−1

d−1
)
,

er (d ,m) = Hr (d − 1,m) + pm−1.

Theorem (Joint with P. Beelen and M. Datta, Proc. AMS, 2018)

The above conjecture is true for 1 < d < q and r ≤
(m+2

2

)
.
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Remarks on the proof of Theorem 3

Theorem (Explicit form of the last theorem)

For 1 < d < q and r ≤
(m+2

2

)
.

er (d ,m) = (d − 2)qm−1 + pm−2 + bqm−ic+ bqm−jc,

where i , j are unique integers with 1 ≤ i ≤ j ≤ m + 1 and
r = (i − 1)m −

(i−1
2

)
+ j .

The main ingredients in the proof are as follows:

Serre’s inequality

Theorem of Heijnen-Pellikaan

Theorem of Zanella

A variant of Bèzout’s theorem by Lachaud and Rolland (2015)

Inequality of Homma and Kim (2013) about the maximum
number of points on hypersurfaces without a Fq-linear
component
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More Recent Results (Joint with P. Beelen and M. Datta)

Completing the incomplete: A starting point is the binomial
identity for positive integers d ,m.(

m + d

d

)
=

(
m + d − 1

d − 1

)
+

(
m + d − 2

d − 1

)
+ · · ·+

(
d − 1

d − 1

)

and also that for any 1 ≤ r <
(m+d

d

)
, there are unique integers i , j

such that

r =

(
m + d − 1

d − 1

)
+ · · ·+

(
m + d − i

d − 1

)
+ j ,

where

0 ≤ i ≤ m, and 0 ≤ j <

(
m + d − i − 1

d − 1

)
.

By convention, i := m and j :=
(m+d−i−1

d−1
)

= 1 when r =
(m+d

d

)
.
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More Recent Results (Contd.)

The “Complete Conjecture” (Beelen - Datta - G, 2018)

For 1 ≤ d < q and 1 ≤ r ≤
(m+d

d

)
, if i , j are as above, then

er (d ,m) = Hj(d − 1,m − i) + pm−i−1.

This reduces to the “Incomplete Conjecture” if 1 ≤ r ≤
(m+d−1

d−1
)
.

The “Complete Conjecture” Version II (Beelen - Datta - G, 2018)

For 1 ≤ d < q and 1 ≤ r ≤
(m+d

d

)
,

er (d ,m) = psd−d + bqsd−1−d+1c+ bqsd−2−d+2c+ · · ·+ bqs1−1c,

where s1, . . . , sd are unique integers with sd > sd−1 > · · · > s1 ≥ 0
satisfying the d-binomial expansion:(

m + d

d

)
− r =

(
sd
d

)
+

(
sd−1
d − 1

)
+ · · ·+

(
s1
1

)
.
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More Recent Results (Contd.)

The conjectured value is, in fact, always a lower bound.

Theorem (Lower Bound)

For m, d , r , i , j as above,

er (d ,m) ≥ Hj(d − 1,m − i) + pm−i−1

There is an upper bound using a ”projective variant” of Hr (d ,m).

Theorem (Upper Bound)

For m, d , r as above,

er (d ,m) ≤ Kr (d ,m), where Kr (d ,m) :=
m∑
i=0

aipm−i−1,

and where (a0, a1, . . . , am) is the r-th element, in descending
lexicographic order, of the set of all (m + 1)-tuples (b0, b1, . . . , bm)
of nonnegative integers satisfying b0 + b1 + · · ·+ bm = d.
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Current State of the New Conjecure

We know that the new conjecture is valid in many, but not all,
cases. The major ones are summarized below.

Theorem (Partial Validity of the Complete Conjecture)

The “complete conjecture” holds in the affirmative for

1 ≤ r ≤
(

m + 2

2

)
and for (m + 1)d additional values of r , namely, for

r =

(
m + d − 1

d − 1

)
+ · · ·+

(
m + d − i

d − 1

)
− t

where
1 ≤ i ≤ m + 1 and 0 ≤ t ≤ d − 1.

In fact, er (d ,m) = pm−i + t for above (m + 1)d values of r .
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On the proof of the new conjectures and results

Here we use a completely new approach that uses:

Results from extremal combinatorics such as
Clements-Lindström Theorem and its variants and extensions

Notions of projective reduction of polynomials with
coefficients in Fq and a projective footprint bound

Hilbert functions and vanishing ideals of projective spaces over
finite fields

Macaulay expansions or d-binomial expansions of integers.

For more details, see the preparatory paper in Acta Math. Sinica
(2019) and the preprint arXiv:1807.01683 (2018), both joint
with Peter Beelen and Mrinmoy Datta.

Remark.

The general problem of explicit determination of er (d ,m) remains
open and can be a good challenge for young researchers!
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Thank you for your attention!

For articles related to my (joint) work mentioned in this talk, see:
http://www.math.iitb.ac.in/∼srg/Papers.html

https://arxiv.org/a/ghorpade s 1.html
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Last e-mail to me from Alexey Zykin

Alexey Zykin <alzykin@gmail.com> Sat, Sep 17, 2016 at 7:50 AM
To: Sudhir Ghorpade <sudhirghorpade@gmail.com>

Dear Sudhir,
Thank you for your positive reply! Taking into account your availability,
scheduling my visit to start in the beginning August would possibly be
the best idea, since there is a summer school that I organize from July 24
to August 1 in Yaroslavl, Russia, and I am practically free after that. I
am still in Tahiti, though I tend to come to Moscow for at least two
months per year. Right now, I have several projects going on mostly in
collaboration: one with Philippe Lebacque on M-functions related to
modular forms, one with Alexey Zaytsev on counting points of high
degree in recursive towers, one with Stphane Ballet on fast multiplication
from Shimura curves, and yet another one with Fabien Pazuki on small
heights of points on abelian varieties over function fields and number
fields. Do codes form Grassmannian varieties constitute your principal
subject of interest these days? Do you have any preferences for the
potential topic of my lectures ? I am looking forward to coming to India
and discussing mathematics with you!

Best regards, Alexey.
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Effective Lang-Weil and Extended Deligne Inequality

Let X be an irreducible projective algebraic variety in Pm defined
over Fq by r equations of degrees d1, . . . , dr . Let n = dim X ,
d = (d1, . . . , dr ), and δ = max{d1, . . . , dm}. The results of
G-Lachad (2002) alluded to earlier are the following.

(Effective Lang-Weil Inequality) If d = deg X , then∣∣∣ |X (Fq)| − pn

∣∣∣ ≤ (d − 1)(d − 2)qn−(1/2) + C qn−1,

where C is a constant independent of q, and in fact,

C ≤ 9× 2r × (rδ + 3)m+1. (3)

(Extended Deligne Inequality) Assume that X is a complete
intersection (so that we may take r = m − n). Suppose s ∈ Z
with dim singX ≤ s ≤ n − 1. Then∣∣∣ |X (Fq)|− pn

∣∣∣ ≤ b′n−s−1(m−s−1,d) q(n+s+1)/2+C q(n+s)/2,

where C is a constant independent of q. Also C = 0 if X is
nonsingular, and C satisfies (3) if s ≥ 0.
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Connection with Coding Theory

Here is a quick review of basics about (linear) codes.

[n, k]q-code: a k-dimensional subspace C of Fn
q.

Hamming weight of c = (c1, . . . , cn) ∈ Fn
q:

wH(c) := #{i : ci 6= 0}.

Hamming weight of a subcode D of C :

wH(D) := #{i : ∃ c = (c1, . . . , cn) ∈ D with ci 6= 0}.

Minimum distance of a (linear) code C :

d(C ) := min{wH(c) : c ∈ C , c 6= 0}.

The r th higher weight of C (1 ≤ r ≤ k):

dr (C ) := min{wH(D) : D ⊆ C , dim D = r}.

C is nondegenerate if C 6⊆ coordinate hyperplane of Fn
q, or

equivalently, if dk(C ) = n.
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A Nice Example: Reed-Muller Codes

Write Am(Fq) := Fm
q = {P1,P2, . . . ,Pqm}. Consider the evaluation

map of the polynomial ring in m variables:

Ev : Fq[X1, . . . ,Xm]→ Fqm
q

f 7−→ (f (P1), . . . , f (Pqm)) ,

The d th order generalized Reed-Muller code of length qm:

RM(d ,m) := Ev (Fq[X1, . . . ,Xm]≤d) for d < q.

This has dimension
(m+d

d

)
and minimum distance (q − d)qm−1.

More generally, one can consider RM(d ,m) for d ≤ m(q − 1),
defined in a similar way, but in this case the formulas for the
dimension and the minimum distance are a little more complicated:

dimRM(d ,m) =
d∑

i=0

m∑
j=0

(−1)j
(

m

j

)(
m + i − jq − 1

i − jq

)
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Minimum distance & Higher Weights of Reed-Muller Codes

The minimum distance of d th order generalized Reed-Muller code
of length qm is given by

d (RM(d ,m)) = (R + 1)qQ ,

where Q,R ∈ Z are such that m(q − 1)− d = Q(q − 1) + R and
0 ≤ R < q − 1. The Heijnen-Pelikaan Theorem corresponds
precisely to the determination of the r th higher weight of (affine)
Reed-Muller code RM(d ,m). Indeed,

dr (RM(d ,m)) = qm −max #V (f1, . . . , fr ), 1 ≤ r ≤
(

m + d

d

)
,

where the maximum is over all families of r linearly independent
polynomials f1, . . . , fr in Fq[X1, . . . ,Xm] of degree ≤ d .
Side Remark: An interesting new variant of R-M codes, called
affine Grassmann codes, has recently been studied. cf. Beelen,
Ghorpade, and Høholdt, IEEE Trans. Inform. Theory, 56 (2010),
3166–3176 and 58 (2012), 3843–3855.
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Projective Reed-Muller Codes

Write Pm(Fq) =
{

P1,P2, . . . ,Ppm

}
, where the Pj are definite

representatives in Fm+1
q of points in Pm(Fq) chosen in such a way

that the first nonzero coordinate is 1. Consider the evaluation map
of the polynomial ring in m + 1 variables:

Ev : Fq[X0,X1, . . . ,Xm]→ Fpm
q

F 7−→
(
F (P1), . . . ,F (Ppm)

)
,

Theq-ary d th order projective Reed-Muller code of length pm:

PRMq(d ,m) := Ev (Fq[X0,X1, . . . ,Xm]d) for d < q.

This has dimension
(m+d

d

)
and minimum distance

pm −
(
dqm−1 + pm−2

)
= qm−1(q − d + 1).

For d ≤ q, determining the higher weights dr of PRMq(d ,m)
corresponds precisely to determining er (d ,m), since

dr (PRMq(d ,m)) = pm − er (d ,m) for 1 ≤ d ≤ q.
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The case d > q
Like the Reed-Muller Codes, the Projective Reed Muller codes
PRMq(d ,m) are defined more generally when 1 ≤ d ≤ m(q − 1),
and kd := dimFq PRMq(d ,m) is given, in general, by the
Mercier-Rolland formula:

kd =

(
m + d

d

)
−

m+1∑
j=2

(−1)j
(

m + 1

j

) j−1∑
i=1

(
m + d − i + (i − j)q

d − i + (i − j)q

)
,

or equivalently, by the Sørensen formula:

kd =
d∑

t=1
t≡d (mod q−1)

(m+1∑
j=0

(−1)j
(

m + 1

j

)(
t − jq + m

t − jq

))
.

If d ≤ q, then kd reduces to
(m+d

d

)
, but in general it can be

smaller. Further,

dr (PRMq(d ,m)) = er+rd (d ,m) for r = 1, . . . , kd ,

where rd =
(m+d

d

)
− kd . For more on this, see:

arXiv:1807.01683v2 [math.AG] (July 2018).
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Thank you!
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