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Alexey Zykin (1984—2017)

On June 13, 2019, Alexey Zykin, a brilliant mathematician and pro-
fessor, our dear friend and colleague, would have turned 35.

Alexey was born in Moscow in 1984. His parents are not mathemati-
cians: his father Ivan Semenovich is a professor of legal studies, one of
the leading Russian specialists in private international law and public
commercial international law, his mother Yulia Ivanovna is an economist
specializing in foreign trade.

At the age of 14 Alexey was admitted to one of the best high schools
in Moscow, School No. 57, to a class majoring in mathematics. The core
math courses in his class were taught by Rafail Gordin and Petr Sergeev.
Among those who taught them advanced mathematics, were such top-
level research mathematicians as Alexander Kuznetsov and Valentina
Kirichenko. As early as in his school years, Alexey became interested in
number theory; in particular, he thoroughly studied the famous textbook
by Ireland and Rosen.

In 2000, during his final high school year, Alexey was admitted to the
Independent University of Moscow, and in 2001, after graduation from
high school, to the Mechanics and Mathematics department of Moscow
State University, together with most of his classmates. During the first
year of his undergraduate studies, he started doing his own research
under the supervision of Professor Michael Tsfasman. Alexey’s first re-
search paper, “Brauer—Siegel and Tsfasman—V1ddut theorems for almost
normal extensions of global fields” was published when he was on the
fourth year of his undergraduate studies. During all of his undergraduate
and graduate years, Alexey continued working under the supervision of
Michael Tsfasman, who had the most significant influence on both the
subject-matter and the style of Alexey’s mathematical research.

After graduating cum laude from the Independent University in 2005
and from the Moscow State in 2006, Alexey, a graduate student of Steklov
Mathematical Institute, obtained a scholarship for graduate studies from
the Government of France. This scholarship entitled him to spend six
months per year in France. Thus Alexey became a graduate student at
the University of Aix—Marseille II in Luminy, near Marseille, under joint
supervision of Tsfasman and Serge Vladut. In June 2009 he defended his
Ph.D. thesis in France, and then, in October 2010, in Russia.
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At the present time young mathematicians rarely find a permanent
academic job right after their Ph.D. thesis, usually spending several years
as a postdoc before that. But this was not the case with Alexey: in 2009 he
obtained an Assistant Professor position at the newly created Department
of Mathematics of Higher School of Economics, in Moscow. For several
years he was the youngest faculty member of this department, and cer-
tainly among the most active ones. He taught numerous courses, compul-
sory and elective ones, both at HSE and at the Independent University.
He also organized numerous seminars and supervised several undergrad-
uate students, who did their research in various areas, not only in num-
ber theory. For instance, one of HSE undergraduates, Dmitry Grischenko,
published a paper on the mathematics of origami, written under Alexey’s
supervision. Every year in 2011—13 Alexey obtained the HSE Award for
Teaching Excellence, based on the results of student polls.

Alexey was a gifted administrator and organizer of various events.
Among his main achievements in this area, let us mention the creation
of a summer school “Algebra and Geometry” in Yaroslavl. This school
was launched in 2011; since then, it is being held every year. It is aimed
at senior undergraduate students and Ph.D. students; in a certain sense,
this makes it a successor of the famous summer school “Contemporary
Mathematics” in Dubna, aimed at senior high school students and first-
second year undergrads. Alexey also participated in the Dubna school,
first as a student and later as an instructor. Also in 2012—13 Alexey was
the head of the Laboratory of algebraic geometry and its applications at
the Higher School of Economics.

In 2014, at the age of less than 30 (again an exceptional case!),
Alexey obtained a permanent professor position in France: more pre-
cisely, in the most remote part of it, at the University of French Polynesia,
in Papeete, Tahiti. But, despite being physically present in the opposite
point of the globe, he kept participating in the mathematical life in
Moscow: he kept contacts with his Moscovite colleagues, supervised
students and came to Russia every summer to participate in the Yaroslavl
school. A couple of months before death, he was appointed head of
GAATI (Algebraic Geometry and Applications to Information Theory)
research group at his university.

Alexey’s interests were not at all limited to mathematics: he was a
polymath, had a good knowledge of literature and music, fluently spoke
English and French, had a taste in wines and good cuisine, loved to travel
(it seems that he had been nearly everywhere in the world, from the
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Himalayas to Kilimanjaro), practiced sports, especially rock climbing and
diving...

On April 22, 2017, Alexey Zykin, his wife Tatiana Makarova and a
diving instructor, Gilles Demée, died while exploring an underwater cave
in Ahe atoll in the Tuamotus, French Polynesia.

Alexey left a broad scientific heritage that consists of 15 published
works (two of them being published posthumously). For his results he
obtained prestigious prizes: Moscow Mathematical Society Award (2011),
“Dynasty” Foundation Award (2010), and others. His research was mostly
in asymptotic theory of global fields and arithmetic varieties. This part of
modern mathematics is developed extensively and lies in between ana-
lytic number theory, algebraic number theory, and algebraic geometry.
Its foundations were established by Michael Tsfasman and Serge Vladut.

Let us say some words about this domain. Important mathematical
objects of study are systems of polynomial equations with integer coeffi-
cients or, more generally, arithmetic varieties. Note that one-dimensional
case is just the theory of global fields. To an arithmetic variety one asso-
ciates a complex-analytic function in one variable, called its zeta func-
tion. There are deep relations between analytic properties of the zeta
function and properties of the arithmetic variety. Each new result to-
wards this relationship is a true breakthrough. It turns out that, given an
infinite family of global fields or arithmetic varieties, in a wide range of
cases the limits of the zeta functions have many remarkable properties,
that reflect many features of varieties themselves. Here, an important
condition on the family is its being asymptotically exact. However, this
is not a very restrictive condition, since any infinite family contains an
asymptotically exact subfamily. These are the questions studied in the
asymptotic theory of global fields and, more generally, of arithmetic va-
rieties. Another source of interest in these investigations is provided by
numerous applications in coding theory and cryptography. Zykin made
fundamental contributions in these domains.

All of Zykin’s papers are wonderfully written, with perfect style and
crystal clarity. Key issues of the reasonings are explained in minute de-
tail. Many papers contain lists of problems for further research. Besides
their high scientific value, Zykin’s papers can serve as an excellent intro-
duction to the asymptotic theory of global fields and arithmetic varieties
for a wide range of mathematicians.

Now let us describe Zykin’s papers in more detail.
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In the paper [1] he proves a strengthening of the classical Brauer—
Siegel theorem. Namely, given a tower of number fields {K;}, one con-
siders the limit of the ratio log(hy Ry,)/gk,, where gx. =log 4/|D | and
hg., Rg,, Dg, denote the class number, the regulator, and the discriminant
of K;, respectively. The classical Brauer—Siegel theorem claims that if
either all the fields K; are normal over QQ, or the Generalized Riemann
Hypothesis (GRH) holds for them, then under certain additional con-
ditions the limit equals 1. In Zykin’s paper under the same conditions
(the so-called asymptotically bad case in the terminology of Tsfasman—
Vladut) an analogous result is proved for the tower of almost normal
fields (Theorem 1). Also, he observes that results of Tsfasman—V1adut on
the generalization the Brauer—Siegel theorem give an analogous state-
ment for asymptotically good towers as well. Besides, under the assump-
tion of GRH, Zykin constructs new examples of towers with the limit
of the Brauer—Siegel ratio being closer to the lower bound than in the
examples known before (Theorem 4).

The article [2] is a survey of results by Tsfasman, Vladut, Zykin,
and Lebacque on families of global fields and of results by Kunyavskii—
Tsfasman and Hindry—Pacheko on families of elliptic curves over func-
tion fields and number fields, respectively. Besides, for an asymptotically
exact family {X;} of varieties of dimension d over a finite field, a theorem
on the limit of residues at s =d of the zeta functions ¢ x.(8) (Theorem 3.2)
is proved.

Further, in [3] Zykin considers an elliptic curve E over a function field
K and a tower {K;} of extensions of K, and studies the asymptotic behavior
of L-functions L, (s) of elliptic curves E; =E Xy K; over the fields K;. He
obtains a statement on the limit of the leading coefficients in decomposi-
tions of Lg.(s) in Taylor series at s=1 (Theorem 2, part 3). Note that it
makes sense not only to consider the limits of residues and leading coeffi-
cients of zeta and L-functions, but also to study the asymptotic behavior of
the functions themselves as functions of a complex variable in a suitable
domain. Zykin presents in [3] a statement on the asymptotic behaviour
of functions log L E, (s) on the domain Res > 1 (Theorem 2, part 2). Com-
plete proofs of these statements are given in [11].

The note [4] contains a brief statement of results of the paper [5]. The
main results of [5] are as follows. For an asymptotically exact family of
number fields {K;}, one studies the asymptotic behavior of the logarithms
of zeta functions log {. (s). In all the results GRH is assumed. It is proved
that in the domain Res > 1/2 the limit of functions log((s — 1)k (s))/gx.
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is equal to the logarithm of the so-called limit zeta function log { (. (s) of
the family {K;} introduced before by Tsafsman and Vladut (Theorem 2).
This gives a conceptual explanation of the generalized Brauer—Siegel
theorem and also, as an application, leads to new results on limits of
the Euler—Kronecker constants, which are analogs for numbers fields of
known results by Thara for function fields (Corollary 1). Besides, Zykin
obtains a nontrivial upper bound for the limit of the logarithm of the
leading coefficients in decompositions of { k() ats=1 /2 (Theorem 3).
In the proofs, bounds on the logarithmic derivative of zeta functions on
the critical strip and results on the asymptotic behavior of zeroes of the
zeta functions on the critical line in families of number fields are used.

The short article [6] announces the results from [7]. Zykin’s joint pa-
per [7] with Gilles Lachaud and Christophe Ritzenthaler gives an answer
to an important question of the great mathematician J.-P. Serre: how to
determine whether a principally polarized abelian threefold (A, a) over
a field k C C is the Jacobian of a curve over k? To do that, the authors
use a certain arithmetic invariant y,5(A, a, w) €k, where w is a basis in
the space of regular 1-forms on A. This invariant is expressed in terms
of an analytic Siegel modular form ¥;3 and allows one to distinguish
abelian threefolds which are isomorphic over a quadratic extension of
the ground field. Combining this with a result of Serre, the authors ob-
tain an answer to the initial question (Theorem 1.3.3). Essentially, the
answer is reduced to the statement that (A, a) is the Jacobian of a non-
hyperelliptic curve if and only if y,5(A, a, w) is a non-zero square in k.
Besides, in the paper, one can find a new simple and nice proof of the
classical formula of Klein, which is closely related to the above question and
has to do with the equality Disc(F)? = y15(A, a, w), where F(x;, X5, X3) is
a smooth homogeneous polynomial of degree 4 and A is the Jacobian of
the corresponding smooth plane quartic with the natural polarization a
and a natural basis of 1-forms «w (Theorem 2.2.3).

Another short note [8] contains statements of results from [9]. In
Zykin’s joint paper [9] with Philippe Lebacque, the authors investigate the
asymptotic behaviour of the logarithmic derivatives Zy (s) =¢ ;( ($)/Ck(s)
of the zeta functions {(s) of global fields K. For all results on number
fields the authors assume GRH. Note that, since the zeta function { (s)
is given by an infinite product, the function Zy(s) is determined by an
infinite series. In [9], the authors first prove a fine explicit bound on the
approximation error in the expression of Zy (s) as an infinite series on
the domain Res>1/2 (Theorems 1.1 and 1.2). In the proof of this result,
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they demonstrate their extraordinary ability to use complicated analytic
techniques and Weil’s explicit formulae. In particular, the bound leads to
a new proof of the so-called basic inequality in the asymptotic theory of
global fields (Remarks 2.2 and 3.2). Then, the above bound is applied to
the logarithmic derivative Z w3 () of the limit zeta function ¢ &y (8) of an
asymptotically exact family of global fields {K;}. Namely, they obtaine a
new bound on the approximation error in the expression of Z,(s) as
an infinite series on the domain Res>1/2 (Corollary 1.3). Besides, the
authors find an explicit bound for the approximation error in the expres-
sion of the value Zixy (1/2) as an infinite series (Theorem 1.4). Finally, this
implies an explicit bound on the approximation error in the expression of
the value log ¢ (1) as an infinite series (Corollary 1.5). The latter bound
is a far reaching strengthening of the classical Brauer—Siegel theorem.
The joint paper with Lebacque [10] is a survey of the asymptotic
theory and serves as a wonderful introduction to it. First, the foundations
of this theory established by Tsfasman and Vladut are explained: limit
invariants, asymptotically exact families, the basic inequality, which is a
far reaching generalization of both the Odlyzko—Serre estimates and the
Drinfeld—Vladut inequality (Section 2). Then they discuss generaliza-
tions of the Brauer—Siegel theorem obtained by Tsfasman, Vlddut, and
the authors of the paper, the asymptotic behaviour of zeta functions and
their zeroes, and also the amazing relations between these topics and
the limit zeta function (Section 3). Then they give examples of towers
of function fields that are asymptotically optimal, that is, that reach the
bound from the basic inequality (Section 4). Such towers correspond
to iterated coverings of curves over a finite field that have the maxi-
mal possible number of points. In the survey, there is a wide range of
examples of asymptotically optimal towers constructed by Ihara, Tsfas-
man, Vladut, Zink, Elkies, Garcia, and Stichtenoth. Besides, the authors
discuss a higher-dimensional generalization of the asymptotic theory of
global fields (Section 5). Namely, they formulate results by Lachaud—Ts-
fasman that generalize the basic inequality to asymptotically exact fam-
ilies of varieties over a finite field. Also, conjectural generalizations of
the Brauer—Siegel theorem to the case of abelian varieties over a func-
tion field proposed by Kunyavskii—Tsfasman and Hindry—Pacheko are
stated. Finally, they briefly mention the theory of abstract L-functions
over a finite fields, which is explained in more detail in the next paper.
The paper [11] contains the foundations of the general asymptotic
theory of varieties over finite fields and over function fields. Main results
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in the asymptotic theory of function fields are generalized to the case
of infinite families of abstract zeta and L-functions over a finite field.
To do this, Zykin carefully analyzes which general arithmetic properties
of zeta functions lead to these results. It turns out that, actually, it is
enough to require only an analog of the statement on absolute values
of Frobenius eigenvalues and also an analog of the fact that numbers
of points are nonnegative, or, even more, its weakening given by the so-
called asymptotic very exactness of families (Definition 3.10). Having de-
veloped explicit formulae in this abstract set-up (Section 2.2), the author
deduces from them many nontrivial results. Let us note a theorem on
the limit distribution of zeroes (Theorem 4.1), a version of the general-
ized Brauer—Siegel theorem on the asymptotic behavior of zeta functions
(Theorems 5.5 and 5.9), and a version of the basic inequality (Theo-
rems 6.1 and 6.6). As an application, Zykin obtains a result on the asymp-
totic behaviour of higher Euler—Kronecker constants for families of func-
tion fields, which strengthens known results by Ihara (Corollary 5.16),
and also obtains a new proof of the basic inequality (Remark 6.5). More-
over, all results are well illustrated by applications to families of elliptic
curves over function fields (Corollary 4.9, Theorem 5.27).

In the short and elegant paper [12], the author studies families of
primitive cusp forms f; of level N; and weight k; such that the number N;k?
tends to infinity. For each form f;, he considers its L-function L 7(8) with
the argument shifted by (k — 1) /2 as compared to the standard definition,
so that the functional equations relates L 7(8) and L £ (1—3). Under the as-
sumption of GRH for L-functions L (s), he proves that asymptotically their
zeroes become uniformly distributed on the critical line (Theorem 1.1).
This beautiful result is obtained with the help of explicit formulae and
other analytic methods.

In another joint paper with Lebacque [13], for any curve X over a
finite field I, the authors give a lower and an upper bound for the class
number h of X, that is, for the number of points on the Jacobian of X
over Fg: hyin (N) < h < hypey (N) (Corollary 2.5). The numbers hy, (N)
and h,,,,(N) depend on a natural parameter N, which can be chosen
arbitrary, and are expressed explicitly in terms of the numbers of points
on X over the fields Iy, where 1< f < N. The proof of the bounds is
based on an explicit formula for zeta functions of curves found by Serre,
in which the authors make a suitable choice of the test function, and is
also based on fine bounds on terms in the explicit formula. It is shown
in the paper that for asymptotically exact families of curves {X;}, the se-
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quences logh,;, (N, X;)/g;, logh(X,)/g; and logh,,..(N, X;)/g; have the
same limits when N, i — « (Remark 2.8). Moreover, the authors present
many of examples of curves from various asymptotically optimal towers,
for which the above lower bound h,,;,(N) with suitable N is far better
than many other known lower bounds for the class number found by
other researchers (Section 3).

In [14], also joint with Lebacque, the authors consider primitive cusp
forms f and Dirichlet characters y and study distribution of values of
the function £ (f ® y,s), which denotes either the logarithm, or the
logarithmic derivative of the L-function L(f ® y,s). More precisely, for
a function #(w) of a complex variable from a rather wide class, the

authors consider the average value % Z P(L(f®y,s)), wheres is fixed
X

and y runs over all Dirichlet characters with a prime conductor m.
Under the assumption of GRH for L(f ® y,s) it is proved that when

m — oo, this average value tends to J@U(u})MU(dewL where the
C

function M, (w) is defined explicitly in terms of the form f and of the
real number o =Res (Theorem 4.1). One can say that M, (w) is the limit
distribution of values of the function y — £ (f ® y, s). Moreover, also
under the assumption of GRH for L(f ® y,s), for any quasi-character
1 : C — C*, the authors prove statements on the limit of the average
values Avg, Y (£ (f ® x,s)) and Avg?@b(f(f ® x,s)), where they take
averages with respect to y and f, and the limit is taken with respect
to a prime conductor m of y and a prime level N of f, respectively
(Theorems 3.1 and 5.1). The average on f is taken with certain special
harmonic weights.

In the joint article with Stéphane Ballet [15], using known results on
intervals between primes, the authors construct asymptotically optimal
towers of modular curves over a finite field, which lead to new upper
bounds on the symmetric tensor rank of multiplication in certain finite
fields (Propositions 7 and 10). In a wide range of examples, these bounds
are better than the bounds known before.

We hope that this collection of works will be quite useful for math-
ematicians from various domains and will help the memory of our dear
Aliosha be longlasting.

Sergey Gorchinskiy, Evgeny Smirnov, Michael Tsfasman
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Words of colleagues and friends from the
website of the Faculty of Mathematics of HSE

Alexei Pirkovskii

I remember Liosha at the time he was a student at the Independent
University. In 2002-2004 he attended my lectures on functional analysis
and spectral theory there, and it was a real pleasure to discuss mathe-
matical questions with him. It was striking how deep he could see things
that, frankly, did not directly concern his algebraic specialization. Even
among extremely bright students of the Independent University, Liosha
was distinguished by his brightness.

Several years ago, already at the Faculty of Mathematics of HSE,
many times I involuntary listened to Liosha’s lectures on number theory
(the open door of his lecture room was just opposite the open door of my
office). I listened with admiring envy — the lectures were just brilliant,
both from the point of view of clarity and consistency of exposition and
from the point of view of oratory. Few are those able to do the same.

We lost a talented mathematician, an outstanding teacher and sim-
ply a very good man. I cannot get out of my mind the lines of the song
of Yury Vizbor: “The best of the best are leaving us earlier than others,
it is strange...”

Ivan Cheltsov

For a long time, I heard about Liosha Zykin as a young and very
talented mathematician working at HSE. But I got acquainted with him
only when he started heading the Laboratory of Algebraic Geometry.
From the first meeting I realized that Liosha was very bright and good.
I should add that, somehow, he did everything with ease: in mathemat-
ical research, organizing summer schools in Yaroslavl, heading the lab-
oratory, teaching, traveling, he succeeded in everything. When Liosha
got his post in Tahiti I was fantastically glad for him. To be engaged in
mathematical research and to head the scientific laboratory in a place
with an ideal climate and European civilization. One can only dream
about it. Naturally, it was sad that he was leaving. But then it turned out
that Liosha preserved his ties with Moscow and continued to take part
in Moscow mathematical life. Everything was very favourable for him.

1 Russian singer and songwriter
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Young, gifted, active, athletic, a beautiful wife, living both in Tahiti and
in Moscow. 32 years. The whole life is ahead. The news of his death was
a shock. It is very difficult to accept.

Vladlen Timorin

It is an irreplaceable loss for mathematics and for all of us. Liosha
was a talented scholar. His achievements were highly appreciated at the
international level. The bright star died out though it could illuminate
much more in science. We are mourning this loss and present our con-
dolences to relatives and friends of Alexey and Tatiana. We will always
remember them.

Ian Marshall

How awful! This is terribly sad news indeed, and a major loss for our
Moscow community.

Fedor Bogomolov

The death of Liosha Zykin is a terrible tragedy. It is a great loss for
all who knew him and worked with him. I got acquainted with him when
he was a student attending the summer school in Goettingen. It is painful
to write about him in the past tense, a young, full of strength and energy
person who has already achieved a lot with bright prospects ahead of him.
Many opportunities were opened to him as a talented scientist and orga-
nizer. Last years, [ worked a lot with him on matters concerning the Labo-
ratory. It is worth saying that in spite of his youth and lack of experience
he proved to be an excellent organizer and leader. A gentle and tactful
person by nature, he could be efficient and persistent. Liosha was an abso-
lutely reliable person to whom one could always turn to in tackling serious
matters. He continued to participate actively in the work of the Laboratory
even when he left for Tahiti, particularly assuming the most difficult part
of work relating to the functioning of the yearly school in Yaroslavl.

He was gifted in various fields, knew a lot and was interested in
many things which lay far apart from mathematics. That was why it was
always interesting to talk to him. Alexey was a remarkable person. My
memory of him and sadness of his loss will stay forever in my heart.

Vladimir Zhgoon

It is hard to believe in the sudden and bitter loss of our dear friend
Liosha Zykin. He was an outstanding mathematician, excellent lecturer and
very responsible teacher who was always ready to help his students. I also
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remember him as a very active tourist. When visiting practically any coun-

try he knew always where to go and what to see. He was a connoisseur of

a delicious cuisine and good wine. As a traveler he visited many interesting

and extraordinary places. He enjoyed talking about them and did it vividly.
Rest in peace, dear Liosha!

Pavel Solomatin

I still cannot believe in what happened. Alexey Ivanovich was not
only my main teacher. He was a true friend, the one who could serve as
an example and who could be always consulted in one’s hour of need.
Why I did not quit my studies at the Faculty of Mathematics in moments
of despair? Why did I start to study number theory? Why L-functions?
Why curves over finite fields? The answer is simple. Thanks to Liosha.
We worked together starting from his first days at the department in
2009 and continued our cooperation even after both of us left Moscow.
I asked him quite recently whether he would be willing to act as one of
the referees for my thesis and he naturally gave his consent. I planned to
write him a letter one of these days to seek advice on what else to do in
my life, but it was too late. I always thought that I would have time to
write with him more than one article, to spend time together somewhere
in the mountains in France with a bottle of good wine, to demonstrate
that the efforts he put in us were not futile. But I was not in time to do
it, and that makes my pain even greater.

Sergey Gorchinskiy

I think that for all of us this tragic news is hard to take in. I knew
Liosha for many years. Starting from his first year at the University, we
were studying together a lot, attended the same seminars. He was an
outstanding person. Probably, in Moscow there is almost no one anymore
who understands algebraic and arithmetic geometry as well as Liosha
did, and at the same time is quite familiar with advanced methods of the
analytic number theory and clearly understands applications to coding
theory and cryptography. This amazing combination was a characteristic
feature of all his mathematical creativity.

As for his early results, I would like to recall a substantial strengthen-
ing of the classical Brauer—Siegel theorem on the behavior of the regu-
lator and the discriminant for a wide range of families of number fields.
Together with P.Lebacque he obtained a new fine estimate of the log-
arithmic derivative of zeta functions of global fields that they used for
a wide generalization of the explicit formula in the Brauer—Siegel the-
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orem itself. Liosha was intensively developing the theory of asymptotic
zeta functions, in particular, its version for families of modular forms.
He developed foundations of the general asymptotic theory of varieties
over finite fields. Together with his coauthors Liosha answered an im-
portant question of the great mathematician J.-P. Serre how to determine
whether a principally polarized abelian threefold is a Jacobian of a curve
over a non-algebraically closed field of characteristic zero. Serre evalu-
ated this result as being quite high.

Liosha was a very good and reliable friend. One could always turn
to him for help. It is amazing how he was equally attentive and patient
to all people who surrounded him.

He was very sensible to life and was a great connoisseur of its beauty.
His fine taste was apparent far beyond mathematics: in art, in communi-
cating with people, in languages, in his hobbies. Liosha was an extremely
well-educated person, for example, he had a deep knowledge of litera-
ture, especially French. Liosha was a fantastic organizer, incredibly com-
bining gentleness and tactfulness in communicating with people with the
ability to carry to completion all he did.

May his memory live forever. Let us remember him as often as pos-
sible, in this way we could help him now.

Alexey Rudakov

How awful! Liosha Zykin, young, energetic, and cheerful. He had been
always that way in corridors and rooms of our building in Vavilova street so
recently. And he is not with us any longer. I mourn him deeply and present
condolences to his relatives and dear ones, to his friends and colleagues!

Sergey Loktev

The thirty-two years of Alexey’s life were bright and interesting. I
was lucky to know him well both as a colleague (we taught calculus
together to students of the Faculty of Mathematics who graduated in
2014) and as a friend (we did some rock climbing together, travelled to
Vorgol and El Chorro).

I would like to single out two of his qualities that come to my mind.
First, his elegance that attracted your attention from the first moments
of your contact with him. He was strikingly tactful and at the same time
sincere, open to everything new and unusual, he respected life in all its
expressions. Second, and his friends were very much aware of this, he
was really fearless. I mean that he might experience fear but it never
governed his thoughts and actions.
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Our exchange of letters stopped with his words that “the rainy sea-
son is coming to its end, life is becoming even better”. I did not have time
to reply to him...

May his memory live forever in our hearts!

Armen Sergeev

I am stunned by the news that Alexey Zykin and his wife died when
diving.

I had the opportunity to take part in his life, though quite formally,
when I was a supervisor in his post-graduate course. He was a pleasant
person and certainly a very gifted mathematician.

It is a great pity to lose people so young, when even without that,
we have a constant shortage of young talented people.

I express my heartfelt condolences to the parents of Alexey and of
his wife.

Valentina Kiritchenko

I remember Liosha as a schoolboy. In the ninth grade it was already
obvious that he was a mathematician. For three years, twice a week, he
would submit to me his exercises in calculus. In Liosha’s class the school-
boys were assigned to university students (that is, you could submit your
exercises only to “your own” student), and I was assigned to Liosha as his
supervising student.

Already at that time, Liosha was distinguished by his fundamental
approach. He never tried to solve a problem in the shortest and easiest
way to get rid of it as soon as possible and to get a good grade. On the
contrary, in each exercise he saw the possibility of investigating a more
general matter. For example, submitting a traditional exercise on the
length of a circle, he started by examining the general definition of the
length of a rectifiable curve. Liosha always began by writing down his an-
swers in a notebook, and with his approach he needed quite a number of
notebooks. Often before submitting another bone-rattling solution from
another notebook Liosha said: “For greater certainty let us also prove this
lemma”. He was not afraid of any difficulties.

Some years later, Liosha became the youngest employee of the Fac-
ulty of Mathematics of HSE. We were colleagues both at the IPPI and at
HSE. But when I think about Liosha, first there appears in my memory
his image of nearly 20 years back, the image of the ninth-year schoolboy-
mathematician who is not afraid of the arduous paths.



Anekceii UBaHoBuY 3bIKHH (1984—2017)

13 urons 2019 rozga UCIOMHUIOCH ObI 35 JIeT AjleKcero 3bIKUHY — 3a-
MedaTeJbHOMY MaTeMaTHKY U IIPeIojaBaTesto, HallleMy JOPOrOMY Apy-
Ty U KOJLJIere.

Anermia pogwics B 1984 roxy B Mockse. Ero poaureny He 6bUTH MaTe-
MaTukamu: otel], MiBaH CeMeHOBUY — JOKTOP HOPUANYECKUX HAYK, IIPO-
dbeccop, OAVH U3 BeAyMUX CIeNUaINCcTOB B Poccuu B o6acTi MeXXayHa-
POZHOTO YaCTHOT'O IPaBa, IPAKAAHCKOTO, TOPTOBOT'O TIpaBa, apouTpaxa;
MaTb, FOmus ViBaHOBHAa — 5KOHOMHUCT B 00JIaCTH BHELTHEH TOPTOBIIH.

B 14 neT Asnemia nocTynuiI B MaTeMaTH4eCKUI Klacc B 3HAMEHUTOU
MOCKOBCKOH mmikose N257. Orot kiacc yuwiu Padann Kammanosud Top-
auH u IleTp BanentuHoBrY Ceprees, a YypOKU «MaTaHaIn3a» (Tak B 57-U
Ha3bIBaeTcs YITyOIeHHBIN KypC MaTeMaTHKY) [TOMOTAIN BECTH, B 4aCT-
HocTH, Anekcanzip KysHelloB u BasentrHa KupudueHko, 06a — BBICOKO-
KJIacCHBIE MaTeMaTUuKU-UcciaefoBareny. VIMeHHO Torja, elje B ILUKOJe,
AJelia 3aMHTepecoBaJICA TeOpHel Yucesl U, B YaCTHOCTH, IPOIITYAUPO-
BaJl KJIaCCUYeCKUH yueOHUK AfiepieHza u Poy3eHa.

B 2000 rozy, eme oavHHAZLATUKIACCHUKOM, AJlella ITOCTYIIMI B
HesaBucuMbIli MOCKOBCKUY YHUBEPCUTET, a B 2001-M, OKOHYMB IIKOIY —
Ha MexmaT MI'Y, Kak U GOJBIIMHCTBO €r0 OHOKIACCHUKOB. [IpUMepHO
TOTZla JKe, Ha TIEPBOM Kypce, OH HayvasJ 3aHUMAaThCs HAyYHOU paboToH
o/, pykoBozcTBOM Muxauna AHaTtonbeBuua llpacmana. Ero mepsas
craThi, «Teopembl bpayapa—3urensa u lpacmana—Biaayna ansa moutu
HOPMAaJIbHBIX PACIIUpeHUN II06aNbHbIX TOel», 6bUIa OMyOIUKOBaHa,
KoTZla OH OBUI ellle Ha YeTBEPTOM Kypce. B TeyeHue Bcex JanbHENIINX
JieT y4e6bl B YHUBEPCUTETE M B aCIUPAHTYpPe OCHOBHBIM AJIELIMHBIM
pyKoBozUTeNeM Mpozaomkan 66T M. A. IdacMaH, CylecTBEeHHEHIINM
00pa3oM MOBIUABIINN KaK Ha COZep:KaHMe MaTeMaTUYeCKUX HCCIeZO-
BaHUU Ajlely, Tak ¥ Ha caM UX CTWIb.

bnectame okonuuB HesaBucumeiil yauBepcuteT B 2005 rozgy u Mex-
MaT B 2006-M U IOCTYIIUB B acHUpaHTypy B MaremaTudyeckuil MHCTU-
TyT UM. B. A. CrexnoBa PAH, Asema nmosydun CTUNEHAUIO IIPaBUTEJb-
crBa ®paHirysckoii pecnybiuky, 6aroapst KOTOPOH OH MOT IPOBOAUTH
LIeCTb MecALeB B rofy Bo Ppannuu. TaM OH yuwica B aCIUpaHType YHU-
BepcuTeTa JKc-Mapcess II B Jltomunu (npuropog Mapcess); ero copyko-
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BozUTeNeM ¢ GpaHITy3CcKoil cTopoHE! Obu1 Cepreli T'eoprueBud Biagyir.
B utone 2009 roza oH 3alUTWI KaHAUAATCKYIO AniccepTanyio Bo ®pan-
11, a 3aTeM B oKkTs6pe 2010 roga — B Poccum.

B Hammwm JHU Cydad, 4TOOBl MOJIOZOM MaTeMaTHK IIOCJe 3allUThI
JUCCcepTalK Cpa3y Hallesa Obl MOCTOSHHYIO aKafleMHUYecKylo paboTy,
[OCTaTOYHO PEAKU, OOBIYHO 3TOMY IPEAIIECTBYIOT HECKOIBKO JIET IIO-
ctaoka. OgHako Astelre 3To yzAanock: B 2009 rozy oH IMONTy4YWI IO3ULHAIO
JOLIEHTa Ha MOSBUBIIEMCS He3aZJ0Nro 0 TOro ¢akyJabTeTe MaTeMaTH-
KU BpIciielt mKoibl 5KOHOMUKU. HecKolbKO JIeT OH OcTaBajIcAd CaMbIM
MOJIOZIBIM COTPYZAHHUKOM 3TOr0 daKyabTeTa — 1 OJHUM M3 CAMBIX aKTUB-
HBIX: OH UUTaJ 00s13aTe/bHbIE U ClIelaTbHbIe KypChl B Boike u B Hesa-
BHCHMMOM YHUBEPCUTETE, OPraHU30BBIBAJ MHOTOYUCIEHHbIE CeMHUHAPHI
Y PYKOBOZAWI MEPBBHIMU HAyYHBIMU PabOTaMU CTYZEHTOB, IIpPUYEM He
06s13aTeNbHO 10 Teopuu 4rces. Tak, HalIpuMep, OfWH U3 CTYEHTOB MaT-
daka, murpuii I'pulleHKO, HamMCaa IOZ AJIEIINHBIM PYKOBOACTBOM
paboTy 0 MaTeMaTHKe OpUraMH, KOTOpas BIOCJIEACTBUU ObUIa OIy6IIu-
KOBaHa B cOopHUKe «MareMaTudyeckoe mpocBelienue». B 2011/13 rr. mo
pesysbTaTaM CTyZ€HYeCKOr'0 TOJI0COBAHMA AJiellle eXeroHO MPUCYXKAa-
JIOCh 3BaHMe Jyyllero npenogasatess BILD.

Aseria ObUT TaTaHTIUBBIM OpraHu3aTtopoM. Cpeau Haunbosnee Bax-
HBIX AJIEIIWHBIX JIOCTIDKEHWM MOKHO HasBaTh OPraHU3alluIo JeTHeM
IITKOJTBI «AJIre6pa 1 reoMeTpHsi» B SIpociiaBiie, KOTopasi BIIEPBhIe IPOIIUIa
B 2011 rofy U ¢ TeX IIOp IPOXOAUT €XEerofHO. JTa LIKOJIa pacCuuTaHa Ha
CTYZEHTOB 3—5 KypCOB U aclIUPaHTOB; TEM CaMbIM OHa ABJAeTCA uael-
HBIM IIPOZO/DKeHNEM 3HaMEHUTOH JieTHeU IIKOJIBI I MJIaJIleKypCHU-
koB «CoBpeMeHHas MaTeMaTuka» B JlyOHe, mpoxozsamieit ¢ 2001 roga
(u B paboTe KOTOpOI1 AJiellia, KCTAaTH, TOXKe HEOZHOKPATHO Y4aCcTBOBAJI:
cHayvasa Kak ciylaTesb, IOTOM Kak IIpernozaBareib). Takke B TeueHUe
2012/13 rr. Asnema 6bu1 3aBeayrouumM JlabopaTopueii anrebpandecKoin
reoOMeTpHUHU U ee NIPWIOKEHUU B Briciiell IKo/le SKOHOMUKMU.

B 2014 rozy —B HemosnHble 30 JeT, ONATb-TAKU HUCKIIOYUTENIbHBIN
ciydaii! — Aselia OTYyYHII ITOCTOSTHHYIO MPOGECCOPCKYIO MO3UIIUIO0 BO
Ppannuu. BepHee, B caMoM JanbHeM ee yroske, B YHUBepcuteTe Ppan-
mysckoli IlomnHesuu, Ha ocTpoBe Tautu. OZHAKO, Ja)ke HaxXoAACh Ha
ZPYrOM KOHIIe 3€eMHOI'O Iapa, OH IIpoZO/DKal IPUHUMATh caMoe ak-
THBHOE y4YacThe B MOCKOBCKOM MaTeMaTH4eCKOH >KM3HU: NOJAepKu-
BaJl KOHTAaKThl C MOCKOBCKMMMU KOJUIETaMHU, PYKOBOAWI CTYZAE€HTaMU U
HEeM3MeHHO INIpHe3Xasl Ha sIpOCIaBcKylo Imkoiny. Hesazgonro o rubemn
OH BO3IVIaBWJI HCCIENOBATENbCKyI0 I'pynny (aHanor kadeapsl) o ai-
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re6panyecKoii TEOMETPUH U €€ MPWIOKEHUAM K TeOpur NHGOPMaLUK
B CBOEM YHUBEPCHUTETE.

Opnako MaTeMaTHUKOU AJlelIMHBI MHTEePechl JaJeKo He OrpaHu4U-
BaJIMCh: OH OBUI Pa3HOCTOPOHHE 0O6Pa30BaHHBIM U 3PYAUPOBAaHHBIM Ye-
JIOBEKOM, XOPOIIO 3HaJI JIUTePaTypy, CBOOGOAHO BlazeN aHIIUUCKUM U
bpaHIy3CKUM SI3bIKAMH, JIIOOWI IyTEIIeCTBOBATh — KAXKETCsA, OH 00b-
€3I IIOYTH Bech MUp, oT 'mMmarnaes fo KuinmaHgxapo, — yBleKauics
CIIOPTOM, B YaCTHOCTH, CKaJioja3aHueM U JaWBUHIOM...

22 ampena 2017 roza Anema 3bIKUAH, ero »keHa Tana MakapoBa U
HWHCTPYKTOP TI0 AaiBUHTY Kb [[oMe Tparndecky Orubiiu npu norpy-
’)KEHUHU B IIOJBOAHYIO Iellepy Ha aTosie A3 Ha ocTpoBax TyaMoOTy, BO
®paHnitysckoit [lonunesnu.

Aseria ocTaBWI OOGIIMPHOE HaydyHOEe Hacleue, YCIeB HamucaTh 15
OITyOJIMKOBAHHBIX paboT (ABe M3 KOTOPHIX BHIIUIN YK€ ITOCMEPTHO). 3a
CBOU Pe3y/IbTaThl OH OBUT YZIOCTOEH PsZja IIPECTKHBIX HArpa/: IPeEMUN
MocKOBCKOTO MaTeMaTHuecKoro obinectsa (2011), npemun poHza «/Iu-
Hactusi» (2010) u Apyrux. Ero paboThl OTHOCATCS B OCHOBHOM K aCUMII-
TOTUYECKOW TEOPUHU II0OATbHBIX MoIel U apudMeTHYECKUX MHOT0006-
pasuii. DTOT aKTMBHO pa3BUBAIOIINIICA pasZiesl COBpeMeHHOM MaTeMa-
TUKY HaXOZAUTCS Ha CTHIKE aHAIUTUIECKOHN TEOPUU ducel, anrebpande-
CKOU TeopUU YMces U anrebpamdeckoil reoMeTpuu. ETo OCHOBBEI ObUTH
3ajioykeHbl B paboTtax M. A. [idacmana u C.T. Biazytia.

OrmuireM B IIeJIOM CyTh BOIIPOCOB B JJaHHOU o61acTy. BakHeHmmMu
00BbEKTaMHM MaTeMaTHUYECKUX WCCIETOBAHUM SABJSIOTCS CHUCTEMBI OMHU-
HOMUAIbHBIX YPaBHEHUI C LEJBIMH K03bUIMeHTaMHu Wik, obo6uias,
apudMeTHUecKrie MHOroo6pasus. OTMETHM, YTO OHOMEPHBIH CTydai —
aT0 TIobampHele TONA. C KaXKABIM apupMeTHYeCKUM MHOTroobpasueM
CBfA3aHa HeKOoTopasd KOMIUIEKCHO-aHaIUTHdeckas (GyHKIUA OT OAHOH
IepeMeHHOM, Ha3biBaeMas ero A3eta-yHkiueil. CymecTByeT rybokas
CBSI3b MEXZY aHAJIUTUYECKUMH CBOMCTBAMU /J3eTa-GYHKIIUU U CBOH-
CTBaMU HCXOJHOTO apuMeTHdeckoro MHoroobpasusa. Kaxzoe HoBoe
yTBEP)KIEHUE, TOATBEP)KAAIOIIEE 3Ty CBA3b, IPE/CTABISAET COO0M 3HAYU-
TeJIbHBIN MHTepec. Ecin paccMaTrpuBaTh OECKOHEYHOE CEMEHCTBO IVIO-
GaIbHBIX TTONel Wi apudMETHIECKUX MHOTOOOpa3nii, TO OKa3bIBAETCHA,
YTO B IIMPOKOM psifie CIydaeB NpeAesnbl UX A3eTa-GyHKIMI 00iafaroT
MHOTMIMM 3aMedaTe/bHbIMU CBOMCTBAMM, YTO UMeeT BayKHbIe CJI€/CTBUA,
Kacaloluecs caMux apudpMeTHIeCKIX MHOT00Opasusax B ceMelicTBe. [Ipu
OTOM B@XHBIM yCJIOBHEM Ha CeMEeMCTBO ABJAETCA ero aCUMITOTHYecKad
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TOYHOCTb, UTO, BIIPOYEM, HE SBJIAETCS CHIBHBIM OTPaHUYEHUEM, TIOCKOTb-
Ky Jt060e GeCKOHEYHOe CEMEHCTBO COAEPKUT aCUMITOTUYIECKU TOYHOE
moziceMeicTBO. VIMEHHO 3TU BOIIPOCHI U U3y4alOTCS B aCHMIITOTHUYECKOH
TEOpUH IVI0OANbHBIX TOJel U, bonee o6lile, B aCUMITOTHYECKON TEOPUU
apudMeTHIeCKUX MHOT006pa3uii. JOTOTHUTETBHBIN HHTEPEC JAaHHBIX HC-
CIeJlOBaHUI 3aK/II09AeTCs B MHOTOUHC/IEHHBIX TIPIWIOKEHUAX BO3HUKAO-
IUX KOHCTPYKIUH K TeOpUY KOAUPOBAHUA U KpUNITOrpaduu. 36IKUH BHEC
byHZaMeHTaNbHBIN BKIAJ B PAa3BUTHE 3TUX 0OIacTe.

Bce craThy 3bIKMHA HAMKCAHBI IPEKPACHBIM SI3BIKOM, OTIHMYAIOTCS
KpHCTaTbHON YeTKOCTHIO U ICHOCTbHIO U3I0KeHUs. KirtoueBrle MOMEHTBI
paccyXeHull Mogpo6HO 0OBSICHEHH. BO MHOTHX CTaThAX B KOHIIE IIPU-
BeJleH CIIMCOK JaJbHEHUITNX OTKPBITHIX BOMPOCOB. [IOMUMO CBO€H BEHI-
COKOH Hay4HOH 1IeHHOCTH, CTaTbU 3bIKMHA fABJAIOTCA 3aMedaTeIbHBIM
BBe/IeHHEM B aCMIITOTUYECKYIO TEOPUIO ITI00aIbHBIX Moel 1 apudme-
TUYECKUX MHOT'000pa3uii i IIMPOKOTO KPyra MaTEMATHUKOB.

OrmuieM cTaTh 3bIKMHA 9yTh MOZAPOOHEE.

B pa6ore [1] ZoKa3aHO ycHIeHNe KIacCHIecKoi TeopeMbl bpayapa—
3uresna. Bonee ToyHO, /1A GaIHU YUCIOBBIX nonel {K;} paccmaTpuBa-
erca npezien otHomenus log(hy, Ry.)/gx,, tae gk, =108 4/IDk |, a hy, Ry,
1 Dy, 0603HAYAIOT YUCIIO KIACCOB, PETYJIATOP U AUCKPUMHUHAHT Mons Kj,
cooTBeTcTBeHHO. Kiaccuueckas Teopema bpayspa—3urens yTBep:kza-
€T, 4To ecsu oy K; HopMasibHBI Ha/l (Q WUTH BhITIONTHAETCS 000061eHHasA
runote3a Pumana (OI'P), To mpy HEKOTOPHIX OrpaHUYEHUAX JAaHHBIN
npezies paBeH 1. B cTaThe 3bIKMHA MOJIy4eH, IPU TeX XK€ OrpaHUYeHUAX
(B TepmuHonoruu ldpacmana—Biazaya, Tak Ha3bIBaeMbIi aCHMIITOTU-
YecKH IUIOXOM ciaydall) aHaJOTUYHBIN Pe3ysbTaT JJiA IIOYTU HOpMallb-
HBIX TosTel (Teopema 1). TaM ke 3aMeueHo, 4YTO pe3ynbTaTh Lidacmana—
Biaayiia, obobimatomue TeopeMy Bpayapa—3uress, Aal0T aHAJIOTHYHOE
yTBEpXKAEHUE U Ui aCHMITOTHYECKH XOpolnux baieH. Kpome Toro, B
npexnonoxeHnu OI'P OCTpoeHBI HOBBIE IPUMEPHI OallleH C Mpeeb-
HBIM OTHOUIeHMeM Bpayapa—3urens 6osee OIM3KUM K OI[eHKE CHU3Y,
4yeM U3BeCTHBIe paHee (TeopeMa 4).

B craTbe [2] comepskuTcs 0630p pesynbraToB Ildacmana, Biaayia,
3bIkuHA U Jlebaka 0 ceMelicTBax IMI0OaIbHBIX TOJIEH, 0630p PE3yIbTaTOB
Kynasckoro—llpacmana u Angpru—Iladeko o ceMeHCTBax S/IHUITHYE-
CKUX KPUBBIX HaJl GYHKITMOHAIBHBIMU M YUCIOBBIMU ITOJIAMU, COOTBET-
cTBeHHO. Kpome TOTO, /11 aCUMITOTUYECKU TOYHOT'O ceMelicTBa MHOT'O-
obpaswuii {X;} pasmepHocTH d Ha/i KOHEYHBIM IOJIEM [JOKa3aHa TeopeMa
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O Ipe/IeIbHOM TOBE/IEHUU BBIYETOB B TOUKe s =d AzeTa-GyHKuui £y (s)
(Teopema 3.2).

[asnee, B pabore [3] paccmaTpuBaeTcs JUIANTHYEcKas KpuBas E
HaJ QyHKIHMOHaNBbHBIM nosneM K, 6amrHs pacummpenudi {K;} mona K, u
U3y4aeTcs Npe/ieibHoe noBefeHue L-GyHKuuii Lg (s) SMIUNTHIECKUX
kpuBbX E; = E X K; Hazg K;. ChopMyTupOBaHO yTBEPXKJEHHE O TIpe-
ZIeTbHOM TOBe/IeHNY BeAyINX KO3GPUITMEHTOB IIpU Pa3iokeHUN GpyHK-
oy Lg, (s) B pag Toimopa B Touke s =1 (Teopema 2, 1. 3). [Tomumo
paccMOTpeHUs MpeeNbHOTO MTOBEAEHY BEIUETOB U BeAYIUX K03bdu-
I[MEeHTOB /3eTa- U L-QyHKIMH, ecTeCTBEHHO TaKKe pacCMOTpeTh IIpe-
JeIbHOE TIOBeIeHNe CAaMUX JAaHHBIX QYHKIINM, KaK QYHKINNM KOMILIEKC-
HOTO IIepEMEHHOTO, ONpe/eNeHHbIX Ha MOAXOAAIIe obracTu. 3bIKUH
dopmynupyeT B [3] yTBep:KaeHNe O IIpeselbHOM ITOBeleHNU QYHKITUH
logL E (s) B obnmactu Res > 1 (Teopema 2, 1. 2). [TosHbIe fOKa3aTeIbCTBa
000UX yTBEPKAEHUH IPpUBeJeHEl B paboTe [11].

B 3ameTke [4] kpaTKo chOPMYIHPOBAaHBI Pe3y/IbTaThl, MOAPOOHOE
H3JI0KEHNE KOTOPBIX COAEPIKUTCA B cTaThe [5]. OCHOBHBIE Pe3y/IbTaThl
cTaTh [5] 3aKiIroUaroTes B cieAyomeM. [T aCUMIIOTOTUYECKHU TOYHBIX
ceMelCTB YMCIOBBIX Toseil {K;} uccienyeTcs mpezenbHOe MOBeAeHNe
norapudpmos Azera-¢yHkuuii logfx (s). Tlpu aToM BO Beex pesynbra-
Tax mpeanonraetcs BeimoraHeHoi OT'P. Joka3bIBaeTcs, YTO B 00JIacTH
Res > 1/2 npeaen dynukuuit log((s — 1)Lk (s))/gx, paBeHn norapudpmy
npeziebHON A3eTa-GyHKIMU log {Ki}(s) ceMelictBa {K;}, BBeJeHHOU
paHee Biaaynom u IpacmanoMm (Teopema 2). DTO ZaeT KOHIENTyaIbHOE
obBsicHeHMEe 0000IIeHHOM TeopeMbl Bpayspa—3uress, a Takke B Kade-
CTBe MPWIOXKEHNE JlaeT pe3y/IbTaT O Ipe/ieTbHOM II0Be/JleHUN KOHCTaHT
Ditnepa—KpoHekepa, ABIAOLUINICA aHATIOTOM /Il YUCIOBHIX Tosel pe-
3ysnbraTta Vxapsl B GyHKIIMOHAIBHOM ciay4dae (ciezactsue 1). Kpome Toro,
JlaeTcs HeTpUBUATIbHAs BepXHAA OIleHKa Ha Ipefen jorapudma Bey-
myx KooGQUIMEHTOB NPU pasnokeHnn GyHKUUM (x (s) B Touke s =1/2
(Teopema 3). JlokazaTenbCTBA HUCIONB3YIOT OIEHKU Ha JiorapudMude-
CKUe TPOM3BOZHbIE A3eTa-QyHKIUA B KPUTHUYECKOU IIOJIOCE, a TaKKe
pesy/bTaThl O IpeZieIbHOM paclpeZiesieHnH Hysel asera-GyHKUMHM Ha
KPUTHUYECKOU TIPSMOU B CEMENCTBAX YMCIOBBIX TIOJIEN.

B KOpOTKO¥ cTaThe [6] aHOHCHPOBAHLI Pe3y/IbTAThl U3 paboTH [7]. B
pabore [7], coBmectHO#i ¢ JK.Jlamo u K. PUTIieHTanepoM, MoIy4eH OTBET
Ha Ba)KHBIN BoIlpoc Besukoro MareMaTuka JK.-I1. Ceppa, Kak oIlpeiesinTb,
ABJIIETCS JIU TVIABHOIIOIAIPU30BaHHOE abeleBO TpeXMepPHOe MHOToo6pa-
3ue (A, a) Haj TpousBONBHBIM HoseM k C C sko6MaHOM KpUBOH Haf k.
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C 3TOM 1e/IbI0 paccMaTPUBAETCs HEKOTOPHIN apudMeTHYeCKUil WHBa-
puaHT yi5(4A, a, w) €k, rae w — 6a3uc B IPOCTPAHCTBE PETYIAPHBIX 1-
¢dopM Ha A. DTOT MHBAapUAHT BHIPAXKAETCA Yepe3 aHATUTUIECKYIO MOAY-
JisipHyIo GopMy 3UTeNA Y1g U MTO3BOJSIET Pa3ainuvaTh abeieBbl TpexXMep-
Hble MHOToo6pa3susi, n3oMopdHble HaZ KBaJPAaTUYHLIM pacIIUpeHUueM
OCHOBHOTO TIOJIf. B coueTanuu ¢ ofHUM pe3yabTaTroM Ceppa 3TO JaeT
OTBeT Ha MCXOAHBIN Bompoc (Teopema 1.3.3). CyliecTBEHHBIM 06pa3oM,
OH CBOAUTCS K TOMY, uTO (A, a) ABIsgeTCcs SKOOMaHOM HETUIEPITUNITH-
4YeCcKOM KpHBOM TorZla U TOJBKO TOrZa yig(A, a, w) ABIAeTCA HeHyIle-
BBIM KBazipaToM B k. Kpome Toro, B cTaThe ZaeTcsi HOBOE, IIPOCTOE U
KpacHuBOe 0Ka3aTeabCTBO Kaaccuueckoi dopmyiel Kielita, TeCHO CBs-
3aHHOU C TIPUBEZIEHHBIM BBIIIE BOIIPOCOM M 3aKTIOYAIONIENCS B PaBEH-
ctBe Disc(F)? = x18(A, a, ), AnA TIaZIKOTO OJHOPOJHOTO MHOTOWIEHA
F(x;, X9, X3) cTenleHU 4 U iIKOOHaHa A COOTBETCTBYIOLIIEH ITIOCKOM KBap-
THUKH C €CTECTBEHHBIMU TOJIsIpU3aliueii a u 6asucom w u3 1-popm (Teo-
pema 2.2.3).

B 3amerTke [8] KpaTKO IIpHBe/eHbI pe3y/IbTaThl U3 paboTs! [9]. B pa-
6ote [9], coBmecTHO ¢ ©.Jle6aKoM, JeTaATbHO UCCIEAYETCS TIPeAeTbHOE
MOBeZIeHHEe JIOTapUPMUIECKUX MPOU3BOAHBIX Zi (S) :C;((s) /Cx(s) mse-
ta-GyHkuuit { (s) miobanbHbIX mosneit K. [Ipyu 3TOM BO BCeX pe3y/IbTa-
Tax, OTHOCSIIUXCS K YHUCIOBBIM TIOJAM, TIPEATIONAraeTcss BBITIOMTHEHHOM
OT'P. 3ameTnM, YTO HOCKOMBKY A3eTa-byHKuusa ((s) 3azaercs Gecko-
HEYHBIM TIpou3BeeHreM, GYHKIUA Z (s) 3aaeTcss 6eCKOHEYHBIM PSIOM.
CHauana B cTaTbe [9] JOKa3bIBaeTCsA TOHKAsA SIBHAdA OlleHKA Ha OCTaTOY-
HBII WIEH B BBIPAKEHUM KaK OeCKOHe4HOro psga GyHKImM Zg (s) B 06-
jmactu Res>1/2 (teopemsbl 1.1 u 1.2). IIpu A0Ka3aTenbCTBEe 3TOTO pe-
3y/JIbTaTa aBTOpaMU ITPOZEMOHCTPHPOBAHO HEBEPOSATHO BUPTYO3HOE BJa-
JeHUe CIOKHEUIIIeH aHaTUTUYECKON TEeXHUKON W ABHBIMU (GOpMyIaMu
Beiia. B wacTHOCTH, ZjlaHHAs OIleHKa MPUBOAAT K HOBOMY JIOKa3aTesb-
CTBY OCHOBHBIX HEPABEHCTB B aCUMITTOTUYECKOH TEOPUH IMIOOATBHBIX T10-
et (3amevanusa 2.2 u 3.2). 3aTeM MOMydYeHHass OIleHKA MPUMEHSETCS
K JIorapupMUIecKO POU3BOAHOM Z i ; (5) TIpeiebHOM A3eTa-GyHKIMK
4 K} (s) acCUMITTOTHYECKH TOYHOTO CeMeCTBa IobaibHbIX moseit {K;}. A
VMEHHO, TIOyJaeTcs ABHAsA OIfeHKAa Ha OCTATOYHBIM WIeH B BHIPAKEHUH
KaK GeCKOHEYHOTO psfia GyHKIUMU Z «y(8) B obactu Res > 1/2 (cnen-
ctBue 1.3). Kpome Toro, aBTopamu Hali/leHa fIBHas OlleHKa Ha OCTaTo4-
HBI WieH B BhHIpaKEHUHM KakK OECKOHEYHOTO psZia 3HauYeHUs Ziy(1 /2)
(Teopema 1.4). HakoHell, 13 3TOTO BbIBeZleHA SBHASA OIleHKA Ha OCTATOY-
HBIM WIEeH B BRIDOKEHUH Kak GeCKOHEYHOro psjia 3HaueHus 1og { k(1)
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(cnexactBue 1.5). [locneHss olleHKA SABIAETCS 3HAYUTENbHBIM YCUIEHU-
€M KJIaCCUYecKOl TeopeMbl Bpayapa—3uress.

CoBMecTHas ¢ JlebakoMm ctaTbs [10] sABifeTca 0630pOM aCHUMIITO-
TUYeCKOHN Teopuu U ABJIAETCs NPpeKpacHBIM BBesleHHeM B Hee. CHavasa
B CTaThe M3JIaraloTCs OCHOBHI JaHHOU Teopud, 3anmoxeHHble [ldacma-
HOM U Biagynewm: npezenbHBIE WHBAPHAHTHI, ITOHATHE ACHUMIITOTHYE-
CKU TOYHOT'0 ceMelCcTBa, OCHOBHOE HEPABEHCTBO, SABJAOLIEeCs JaTeKUM
060011IeHIeM OJHOBPEMEHHO OlleHOK OzmsnkKko—Ceppa U HEpaBeHCTBA
Jpundenbaa—Biagyna (maparpad 2). 3ateM ob6CyXaaroTcst 00006IIeHS
TeopeMsl Bpayapa- 3uresns, npuHanexaiye Lipacmany, Bragyiy u aBro-
paM CTaThbH, IIpeZieIbHOe TIOBeZIeHNe A3eTa-QYHKIMHA U UX HyJIEH, a TaKKe
VAUBUTENbHBIE CBA3UM JTUX TEM C IpeAelbHOM A3eTa-dyHKIMeH (mapa-
rpad 3). [lanee nmpUBOAATCA MpUMeEPHI balieH GyHKIMOHAIBHBIX MOJEH,
SBJIAIOIINXCS ACUMITTOTHYECKY ONITUMAIBHBIMHY, T.€. ZOCTUTAIOIINX OlleH-
Ky 13 OCHOBHOTO HepaBeHCTBa (maparpad 4). Takue 6aIrHu COOTBETCTBY-
IOT UTEPUPOBAHHBIM HAKPHITUAM KPUBBIX Ha/l KOHEUHBIM ITI0JIEM, UMelo-
IIMM B TIpeZiesie Hanbosblllee BO3MOXKHOE YHCJIO ToYeK. B 0630pe onvicaH
IIMPOKUH PAZ IPUMEPOB aCUMITOTUYECKU ONITUMAIbHBIX OallleH, MOCTPO-
eHHBIX Vxapoi, Lipacmanom, Biaxyriom, Ilunkom, dmkucom, apcueit
u lltuxreHoToM. KpoMme Toro, o6CyX/aeTcsi MHOTOMEPHOe 0600IIeH e
aCHMITTOTUYECKOH Teopuu MIobaIbHEIX Toselt (maparpad 5). A IMeHHO,
bopmynupytoTcs pesynbraThl Jlamo—llbacmana, o6o61arone 0CHOB-
HOe HepaBeHCTBO Ha CiIy4yall acCUMIITOTHYECKU TOYHBIX ceMeHCTB MHO-
roo6pasuii HaJi KOHEYHBIM IOJeM. TakKe TPUBOAATCSA TUIOTETUIECKIE
06061eHus TeopeMsl bpayapa—3uress Ha crydail ceMeHCTB abeieBBIX
MHOroobpasuii Ha/i QYHKIIMOHAJIbHBIM [OJIEM, TPUHAIeXalye KyHas-
ckomy—Lldacmany u Anzpu—Ilaueko. HakoHell, KpaTKO OOBACHAETCA
dbopmanuaM abCTpaKTHBIX L-QyHKITUM HaZ KOHEYHBIM TI0JIEM, TOAPOOHO
U3JI0)KeHHBIN B cleflyIoliell cTaThbe.

B cratbe [11] 3aymoxeHbl GyHZaMeHTaIbHBIE OCHOBHI OOIIEN aCHMII-
TOTUYECKON TEOPHUU MHOT00Opa3mil HaZl KOHEUHBIMHU M HaZ GYHKIU-
OHAJIbHBIMU TOMAMHU. OCHOBHBIE YTBEP)KAEHUS M3 aCUMIITOTUYECKOH
TeopuH (QYHKIMOHAJIBHBIX TIOJEH 0600IIaloTes Ha ciydail 6ecKoHed-
HBIX CEMEMCTB abCTpaKTHBIX /A3eTa- U L-QyHKUMA HaZ KOHEYHBIM IIO-
seM. C 2TO# Uenbio 3BIKMH TINATETHHO aHAIM3UPYeT, KaKhue WMeHHO
obmue apudMeTHUECKHe CBONCTBA A3eTa-GyHKUINN KPUBBIX MPUBOAAT
K ZJAaHHBIM OCHOBHBIM YTBepAeHUsAM. OKa3bIBaeTcs, YTO, 0 OOJbIIO-
My CYETYy, OCTATOYHO IOTPebOBATh aHAJIOT YTBEPXKIAEHUSI O MOZYIIAX
cobcTBeHHBIX 3HaueHU dpobeHnyca, a TaKKe aHAJIOT HEOTPUIATENb-



26 Anexkceti ViBaHoBuY 3bIKUH (1984—2017)

HOCTH YMCJIa TOYEK WIM €ro ocjabiieHre, 3aK/II0Yalolneecs B aCUMIITO-
TUYECKOUM OYeHb TOYHOCTHU ceMelicTB (ompeaenenuie 3.10). Pa3BuBas siB-
Hble GOpMYJIBI B TAaKOM abCTpaKTHOM KoHTekcTe (maparpad 2.2), aBTop
BBIBOJIUT M3 HUX MHOXECTBO HETPUBUAJIBHBIX pe3yabTaToB. OTMeTUM
TeopeMy O TIpeJieTbHOM paclpeziesieHre Hysnel (Teopema 4.1), Bapu-
aHT 060011eHHOI TeopeMbl Bpayapa—3ureJis o mpeeJbHOM ITOBeeHUN
n3eTa-GyHKIUH (TeopeMsbl 5.5 11 5.9) 1 BapuaHT OCHOBHOT'O HEPAaBEHCTBA
(Teopems! 6.1 11 6.6). B kauecTBe IPUIOKEHNA IIOTYY€HO YTBEPKIEHUE O
TpeZie;ThHOM TTOB€E/IEHUH BHICITUX ITOCTOSTHHBIX Jitlepa—KpoHekepa Aist
ceMelcTB QYyHKIIMOHAJIBHBIX TOJIEH, YCUIMBAIOIIEee M3BECTHBIE paHee
pesynbratel Mxapsl (creactBue 5.16), a Takke HalieHO HOBOE ZI0Ka3a-
TEJbCTBO OCHOBHOTO HepaBeHCTBAa (3amedaHue 6.5). Kpome Toro, Bce
obI11IMe pe3yabTaThl TPEKPACHO MPOWLTIOCTPUPOBAHBI TPWIOKEHUAMU K
ceMelCcTBaM JUIMITHYECKUX KPUBBIX HaJl GYHKIIMOHAIBHBIMU MOMAMHA
(cnepctBue 4.9, Teopema 5.27).

B xopoTKoii u aneraHTHOM craThe [12] HccaeAyroTesa ceMeicTBa Ipu-
MUTHUBHBIX TTapabonudeckux ¢popMm f; ypoBHs N; u Beca k;, 11 KOTOPBIX
YKCIIO Nikl.2 CTpeMHUTCS K OeCKOHeUHOCTH. [ Kaxza0i GopMmHl f; pac-
cmarpuBaercs ee L-GyHkuus L (s), apryMeHT KOTOPO¥ 0 CPaBHEHMIO
CO CTaHZAPTHBIM MMOAXOAOM cABUHYT Ha (k — 1) /2 Tak, 4To6bl GYHKIIUO-
Ha/JIbHOE ypaBHEHUE CBSA3BIBANIO GYHKIUU L 5 S)ul 5 (1 —5). B mpegro-
snoxkennu OTP st L-QyHKIMMA L I (s) mokasbIBaeTcs, YTO B TIpefiesie UX
HyJIU pacupeziejieHbl paBHOMEPHO Ha KpUTHYecKol mpsaMoiu (Teopema
1.1). DTOT KpaCUBBIM Pe3y/abTaT MOMYIAeTCs C TIOMOIIbIO IBHBIX GOPMYJT
U IPYTUX QaHATUTUIECKUX METOZIOB.

B pa6ote [13], coBMecTHO#1 ¢ JlebakoM, JJis TPOU3BOIBHON KPUBOI
X Hajl KOHEYHBIM I0JIeM F; TIPUBOAATCA HYDKHSAS M BEPXHsAA OLIEHKH
Ha YMCJIO KJIaccoB h KpUBOM X, T.e. HA YUCJIO TOUYEK Ha AKoOUaHe KpU-
BOM X Haz FFy: hpin(N) < h < hp(N) (cneacteue 2.5). [Ipu aToM yuc-
sa hy (N) 1 hy,,(N) 3aBUCAT OT HaTypaJabHOTO napamerpa N, KOTO-
PBIF MOKHO BBIOMpPATh ITPOU3BOJBHBIM 00pa3oM, U BBIPAXKAIOTCS SIBHO
B TeDMHUHAX 4UCesl TOYeK KpuBoM X Haj momamu Fyr, rae 1< f < N.
[l moKasaTenbCTBA OIEHOK HCIIONb3yeTcs ABHas GopMmysia A A3eTa-
bYHKITME KpUBBIX, TpefiokeHHas CeppoM, B KOTOPOM aBTOpaMU BhI-
OGupaeTcs TOAXOAANAA TeCToBasA GYHKIINS, a TAKXKe HAXOAATCS TOHKUE
OIIEHKH Ha WIEHBI, BXOAAIIME B ABHYIO popMyity. B craThe moKa3aHo, 4TO
JI71s1 aCUMITTOTHYECKY TOYHBIX CeMeMCTB KPUBBIX { X; } TTocIezoBaTeNbHO-
ctu loghy, (N, X;)/g;, logh(X,)/g; v logh, (N, X;)/g; nmetoT oauHa-
KOBBIe TipeZienbl pu N, i — oo (3amevaHue 2.8). bosee Toro, mpuBezieH
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PSAZ IPUMEPOB KPUBHIX, BO3HUKAIOUINX U3 PA3TUYHBIX aCUMITOTHYECKU
ONTUMAaJIbHBIX OallleH, i1 KOTOPBIX NpUBEJEHHAs B CTAaTbe HIDKHAA
olleHKa h;,(N) mpu nmoaxozdameM N oKasblBaeTCs CYI[ECTBEHHO CHJIb-
Hee HEKOTOPHIX U3BECTHBIX paHee HIDKHUX OIIeHOK Ha YMCJIO KJIAacCoB,
HalIleHHBIX APYTUMHU UcciefoBarenamu (maparpad 3).

B cratbe [14], Takke HammucaHON COBMECTHO ¢ Jle6akoM, paccMaTpu-
BalOTCS MPUMUTHBHBIE Tapabonudeckrie GopMbI f, XapakTepsl J[upuxie
¥ ¥V U3y4YaeTcs pacipeziesieHue 3HavyeHuu GyHkumu £ (f @ y,s), 060-
3HaYaIIel JorapudM wiu JorapudMUIecKyl0 IPOU3BOAHYIO L-byHK-
muu L(f ® y, s). Bonee To4uHO, /11 PYyHKIINN KOMIUIEKCHOTO IIe€PeMEeHHOT0
& (w) M3 JOCTAaTOYHO IMIMPOKOT'0 KIacca pacCMaTPUBAETCS CpeZiHee 3Hade-

Hue %Z‘ﬁ(ﬁf (f®x,s)) mpu QUKCUPOBAHHOM $, TAe ) TpoberaeT Bce
V4

XapakTepsl /lupuxiie ¢ IpOCTBIM KOHAYKTOPOM m. B npeanonoxenuu OI'P
s L(f ® y,s) ZOKasbIBAeTCA, YTO IPH M — o JaHHOE CpeZiHee 3Haue-

HUE CTPEMUTCA K J@U(w)Mo(w)ldwl, rae dynkuma M, (w) omnpezene-

C
Ha ABHBIM o6pa3oM mo ¢opMe f U IO BelleCTBEHHOMY YuCTy O =Res

(Teopema 4.1). MoxHO ckasatb, uTo M, (w) ABIAeTCA NpeeIbHBIM pac-
IIpeZiesieHreM 3HaueHUH ¢yHkuuu y — £ (f ® x, s). Kpome Toro, Takke
B nipeamnonoxennu OI'P ana L(f ® y,s), B cTaTbe AJIsi IPOU3BOJIBHOTO
kBasu-xapakrepa 1 : C — C* 10Ka3bIBAlOTCS YTBEPXKAEHUSA O IIpeZesie
CPeAHUX 3HAYEeHUH Avglz,l)(.%(f ® x,8)) n Avg;}w(.ff(f ® x,5)), TOe
cpefiHVe 3HaYeHUs G6epyTcs Mo y U f, a mpezen 6epeTcs Mo MPOCTOMY
KOHJZIYKTOPY m XapaKTepa y ¥ IO MpocToMy ypoBHIO N popMbI f, co-
orBeTcTBeHHO (TeopeMbl 3.1 u 5.1). Ilpu aTOoM cpefHee 3HauYeHUe IO f
6epeTcs C HEKOTOPBIMU CIIelMaTbHBIMU TApMOHUYECKUMU BECAMH.

B pa6orte [15], coBmecTHOi ¢ C. Basje, Ipu TOMOIIY U3BECTHLIX pe-
3yJIbTaTOB 06 MHTEPBaIAaX MEX/Y IPOCTHIMHU YHCIaMU, CTPOSITCSI aCUMII-
TOTUYECKU ONTUMAaJIbHbIE CEMEeNCTBa MOAY/ISIPHBIX KPUBBIX HaJ, KOHEY-
HBIM I10JIeM, KOTOPBIE [T03BOJIAIOT HAlTH HOBBIE OIIEeHKU CBEPXY Ha CHUM-
MeTpUYECKUN TEH30PHBIM PAHT YMHOKEHUS B HEKOTOPBIX KOHEYHBIX TT0-
sax (npeaynoxenus 7 v 10). /laHHBIE OIIEHKM OKa3bIBAIOTCA B PsJlE CITy-
YaesB JIy4llle U3BECTHBIX PaHee OLIEHOK.

MbI HaZieeMcsl, YTO JJaHHBIN COOPHUK cTaTel OyzZeT BechbMa IOJIE3-
HBIM [IJIsI MaTeMaTHUKOB 13 Pa3IUYHBIX 00IacTel, a TaKKe TOMOKET TIPO-
JJIUTD TTaMATh O JOPOToM AJellie.

C. O. I'opuunckuil, E. FO. CmupHos, M. A. Llpacman



28

Anexkceti ViBaHoBuY 3bIKUH (1984—2017)

10.

11.

12.

13.

14.

15.

Jluteparypa

. Alexei Zykin, The Brauer—Siegel and Tsfasman—VIadut theorems for almost

normal extensions of number fields, Moscow Mathematical Journal, 5 (2005),
no. 4, 961—968.

. Alexey Zykin, On the generalizations of the Brauer—Siegel theorem, Arith-

metic, geometry, cryptography and coding theory, Contemporary Mathe-
matics, vol. 487, Amer. Math. Soc., Providence, RI, 2009, 195—206.

. A.IL Zykin, Brauer—Siegel theorem for families of elliptic surfaces over finite

fields, Mathematical Notes, 86 (2009), no. 1, 140—142.

. A.IL Zykin, Asymptotic properties of the Dedekind zeta function in families of

number fields, Russian Mathematical Surveys, 64 (2009), no. 6, 1145—1147.

. Alexey Zykin, Asymptotic properties of Dedekind zeta functions in families of

number fields, Journal de Théorie des Nombres de Bordeaux, 22 (2010),
no. 3, 771—778.

. G.Lachaud, C.Ritzenthaler, A.I. Zykin, Jacobians among abelian threefolds:

a formula of Klein and a question of Serre, Doklady Mathematics, 81 (2010),
no. 2, 233—235.

. Gilles Lachaud, Christophe Ritzenthaler, Alexey Zykin, Jacobians among

abelian threefolds: a formula of Klein and a question of Serre, Matematical
Research Letters, 17 (2010), no. 2, 323—333.

. P.Lebacque, A.1.Zykin, On logarithmic derivatives of zeta functions in fami-

lies of global fields, Doklady Mathematics, 81 (2010), no. 2, 201—203.

. Philippe Lebacque, Alexey Zykin, On logarithmic derivatives of zeta functions

in families of global fields, International Journal of Number Theory, 7 (2011),
no. 8, 2139—2156.

Philippe Lebacque, Alexey Zykin, Asymptotic methods in number theory and
algebraic geometry, Actes de la Conférence “Théorie des Nombres et Appli-
cations” in: Mathematical Publications of Besancon, Algebra and Number
Theory, Presses Univ. Franche-Comté, Besancon, 2011, 47—73.

Alexey Zykin, Asymptotic properties of zeta functions over finite fields, Finite
Fields and their Appications, 35 (2015), 247—283.

Alexey Zykin, Uniform distribution of zeroes of L-functions of modular forms,
in: Algorithmic arithmetic, geometry, and coding theory, Contemporary
Mathematics, vol. 637, Amer. Math. Soc., Providence, RI, 2015, 295—299.
Philippe Lebacque, Alexey Zykin, On the number of rational points of Jaco-
bians over finite fields, Acta Arithmetica, 169 (2015), no. 4, 373—384.
Philippe Lebacque, Alexey Zykin, On M-functions associated with modular
forms, Moscow Mathematical Journal, 18 (2018), no. 3, 437—472.

Stéphane Ballet, Alexey Zykin, Dense families of modular curves, prime num-
bers and uniform symmetric tensor rank of multiplication in certain finite
fields, Designs, Codes and Cryptography, 87 (2019), 517—525.



CioBa KoJuler u Apy3ei c cailTa pakyabTeTa
MmaTreMmaTtuku BIID

A. 10. ITupkoBckuii

f momH10 Jlenty ctysenToM HesaBucumoro yHusepcutera. B 2002—
2004 rozax oH CJIyIIaM TaM MOU JIEKIIMH MO GYHKITMOHAIBHOMY aHAINU3Y
U CHEKTPaIbHOU TEOpUU, U OOUIAThCA C HUM Ha MaTeMaTHYecKUe Te-
MbI OBUIO HACTOAILIMM YZOBOJBCTBHEM. [lopakajo TO, HACKOIBKO TJTy-
60KO eMy yZaBaJoCh pa3obpaThCs B BelllaX, KOTOPEIE, B OOIIEM-TO, He
OTHOCWIMCh HANpsIMYIO K ero anarebpamdeckoil crernumanusanuu. Jaxke
Ha o61eM sapkoM ¢doHe cTyzeHToB HesaBrcumoro Jlela BeENANICA ellle
spde. A HECKOIBKO JIET Ha3asl, y»Ke Ha MaTdake BBIIKY, 1 HEOJHOKPATHO
OKa3bIBasICA HEBOJIBHBIM CJIylIaTesneM JISMUHBIX JEKLIUH 110 TeOPUH Y-
ceJs (OTKpHBITasA ABEPh €ro ayJMTOPUY HaXOAWIAch B TOYHOCTH HAIIPOTHUB
OTKpPHBITOH ZiBepu Moero oduca). f ciyman u 3aBug0Ban 6eoi 3aBU-
CTBIO — JIEKIIMY OBUIM TPOCTO BETUKOJIEIHBI, KaK C TOYKU 3PEHUs YeT-
KOCTHU U TIOCJIe0BaTeNbHOCTH U3JI0XKEeHUA, TaK U C TOUYKHU 3peHUsd opa-
TOPCKOI'0O HCKycCTBa. Majo KTO Tak yMeeT.

MpbI IOTepAIN TAIAHTIMBOIO MaTeMaTHKa, BIZAloIerocs npernoja-
BaTesd U IPOCTO OYeHb XOpoIlero yejaoBeka. He BBIXOJAT U3 TOMOBEI
cTpoku u3 necHu HOpus Busbopa: «Jlydine pebata u3 pebGAT paHbIle
BCEX YXOZAT, 3TO CTPAHHO...»

H. A.YenbioB

S y3uarn o Jleme 3bIKMHE 1aBHO KaK O MOJIOZOM U OUY€Hb TAJIaHTIMBOM
MareMaTUKe B BhIIKe. A TO3HAKOMWICA C HUM TOJIBKO KOTZIa OH CTaj
PYKOBOZMTH J1abopartopueii Anrebpandeckoil Teomerpuu. U ¢ mepBoi
BCTPEYM CTAJIO MOHATHO YTO Jlela O4YeHb CBET/IBIM M XOPOIIWH Yesro-
Bek. [Ipy 3TOM OH KaK-TO JIETKO BCE Jielayl: 3aHUMAaJICS MaTeMaTHKOMH,
OpraHU30BBIBAJ JIETHUE IIKOIBI B SIpOCiIaBie, pyKOBOAWI JlabopaTopuei,
TIperioZiaBasl, MyTellecTBoBaI. V1 y Hero Bce momydanochk. Korza Jlema
TIOTYYVUT TTO3ULIMIO Ha TauTw, 51 6bUT 6e3yMHO paZ 3a HETo. 3aHUMAThCS
MaTeMaTHKON U PYKOBOAUTH HAY4HOU JlabopaTopHelil B MecTe C W/eab-
HBIM KJINMaTOM U eBpoIeiickoil ruBminzanyeil. O TakoM MOXKHO TOJIBKO
MeuTaTh. KOHEYHO GBUIO IPYCTHO, YTO OH ye3kaeT. Ho IoToM OKa3aioch,
yTO Jlema coxpaHWI CBA3b ¢ MOCKBOH U NPOAOKAI aKTUBHO y4acTBO-



30 CroBa KOJUIET U Zipy3eit

BaThb B MOCKOBCKOII MaTeMaTHYECKOM >KM3HU. B 0OIleM BCe CIOXKIIOCH
O4YeHb XOpoIo. MomoZioN, TaTaHT/INBbIN, aKTUBHBIN, CIIOPTUBHBIH, KeHa
KpacaBulIa, xuBeT Ha Tautu u B Mockse. 32 roza. Best )KM3Hb BIIepeZ.
HoBocTb 0 ero cmeptu moxkvpoBaia. O4eHb TPYAHO 3TO MPUHATE.

B. A. TumopuH

HeBocriomHuMas yrpara [yl MaTeMaTHUKY U /Ul Bcex Hac. Jlerma 6but
TAJIAHTIMBBIM y9€HbIM, €0 JOCTIDKEHUs MOMYUIIN BBICOKOE MeXIYHApPOZ-
HOe TIpU3HaHKe, HO 3TO ObUIO TONBKO Havaslo. SIpkas 3Be3Zia moracia, XoTs
Morvia Obl ellle MHOTOe OCBETUTh B Hayke. CKOpOMM U cobose3HyeM pof-
CTBEHHMKaM U py3bsAM Ajiekces 1 TaTbsHbl. Ml 6yZieM TIOMHUTD O HUIX.

N. Mapuias

How awful! This is terribly sad news indeed, and a major loss for our
Moscow community.

®. A. BoromoJjioB

[Tpousonuta cTpaiHas Tpareaus. [Toru6 Jlema 3pIKUH.

ODTo orpoMHas moTeps AJIA BCeX, KTO €ro 3Hal U paboTan BMecTe
C HUM. fl 3HaJ ero emje CTy[AEHTOM, C TeX IOp Kak OH IIpHexas JIeTOM
Ha mKoiny B [eTTuHreH. BombHO nucaTh O HEM B IIpOIIeAIIeM BpeMeHH,
0 MOJIOZIOM, IIOJTHOM CHJI U DHEpPruu 4esloBeKe, KOTOPBIH y»Ke MHOI'Or'o
JOCTUT U Tlepes] KOTOPBIM OTKPBIBAIKCEH ellle OOJBIINE MEPCIEKTUBHL.
C ero TajaHTOM Y4YeHOTO U OpraHU3aToOpa Iepes HUM OBUIM OTKPBITHI
MHorue myTH. [ocieziHye rofbl 1 MHOTO ¢ HUM paboTaJt 1o Aenam Jlabo-
paTopuu U X04y OTMETUTb, YTO HECMOTPS Ha MOJIOLOCTb U OTCYTCTBUE
OTIBITa OH MPOSIBIJI cebs MpeKpacHBIM OPTaHM3aTOPOM U PYKOBOJUTE-
sieM. Byay4u 1o Ipypoje MATKUM U TAKTUYHBIM OH YMeJI ObITh YeTKUM
Y HacTON4YMBBIM. Jlemia GbUT abCOMIOTHO HA/IEXKHBIM U Ha HEro Bcerza
MOXKHO OBUIO TIOJIOXKUTHCS B PELIEeHUH CEPbe3HBIX BOIIPOCOB. Jaxe mo-
cJle CBOEro oTbe3Zia Ha TauTu OH NMPOAOIXKaT aKTUBHO y4acTBOBAaTh B
pabote JlabopaTopuu Y, B YAaCTHOCTH, B35 Ha cebsA caMylo TPYAHYIO
YacTh pabOTHI IT0 OPTaHU3AIUN €XXETOAHOHN SIPOCTABCKOM IIKOJBL.

OH ObLT TATAHTIUB B Pa3HBIX 00IACTAX, MHOTO 3HAJI M UHTEPECOBAT-
cs1 MHOTMMHU BelllaM¥ JaJIeKUMU OT MaTeMaTHKU. [1oaToMy 6BUIO Beerza
WHTEPECHO C HUM pa3roBapuBarthk. Jlemra GbUT 3aMeyaTeTbHBIM YeIoBe-
koM. ITamMATh 0 HeM U ropedb OT 3TOM yTpaThl HaBcerZa OCTaHeTCAd B
MOEeM cepaLie.
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B. C. XKryu

TpyZHO ITOBEPUTH B CTOJIb HEOXKUAAHHYIO U TOPLKYIO ITOTEPIO Hallle-
ro gopororo gpyra Jlemu 3bikrHa. OH ObUI 3aMeYaTeNbHBIH MaTeMaTHK,
OTJIMYHBIN JIEKTOP U OYeHb OTBETCTBEHHBIN IIearor, TOTOBBIN Bcerza
MIPUUTU Ha IIOMOIIb CBOMM CTyZileHTaM. A ellle g IIOMHIO ero Kak O4eHb
aKTHUBHOTO TypucTa. Haxozsch B ouTH Jito60#i cTpaHe, OH BCerza 3HaJl,
KyZla MOXKHO IT0€eXaTh, YTO OCMOTpeTh. OH ObLT 3HATOKOM U3bICKAHHOH
KYXHU U XOpOIIEro BUHA, a B €ro KOIWJIKe ITyTelIeCTBEHHNKA MHOMXe-
CTBO MHTEPECHBIX ¥ HEOOBIYHBIX MECT, O KOTOPBIX OH C yZIOBOJIbCTBUEM
U KPacoO4HO paccKasblBall...

[TycTth 3emis Tebe GyzeT myxoMm, Zoporoi Jlema!

I1. ComomaTuu

Jlo cuxX Top He MOTY MOBepUTh. AJleKcel IBaHOBUY OBUT HE IIPOCTO
MOUM I7IaBHBIM yuuTesneM. OH ObUT MHE HACTOSIINM JPYTOM, OZHUM U3
TeX Ha KOT'O XOTEJOCh PaBHATHCA U Y KOTO BCErZla MOXKHO OBLIO CIIPO-
CUTb COBETA B TPYAHYIO MUHYTY. [lodyeMy 51 He 6pocu yueby Ha MaTda-
Ke B MOMEHTHI oT4asgHuA? [loueMy 3aHsicsa Teopueit uyucen? [Touemy L-
¢bynkiun? IloyeMy KprBble HaJl KOHEUHBIMU MOIAMU? OTBET IPOCTOH —
6arozaps Jleme. Mbl paboTasu BMeCTe ¢ HUM Ha4YMHAasi C €ro IePBBIX
nHelt Ha daxynbreTe B 2009 rogy u mpojomKanu paborarh gaxke mMociie
TOro Kak oba yexanu m3 MockBbl. ByKBaJbHO HEZaBHO 5 CIPOCHI He
XOYeT JIU OH OBITh OJHUM M3 MOWX Hay4HBIX ONIIOHEHTOB Ha 3aluTe
JVICCEPTALNY U OH €CTECTBEHHO coracuics. M BOT Ha THAX A cobupacs
HamnucaTb eMy odepefHOe IMCbMO, XOTeJ CIPOCUTE COBETAa KaK JABUTATh-
A I10 YKU3HU JlaJibllle, HO KaK OKasasloch, He ycriesl. fI Bceraa fymai, 4To
yCIlelo. .. yCIelo HalucaTh ¢ HUM He OfIHY CTaThlo, YCIIelo MOCHUJEeTh T7e-
HUbyab B ropax Bo PpaHuuu ¢ 6yTHUIKOM XOPOIIero BUHA, YCIIelo MOKa-
3aTh, YTO T€ YCHUJIMA KOTOPBIE OH B HAaC BKJIA/bIBaJ ObUTH He HalpacHBL
Ho He ycmen. 1 0T 3TOro Kak-TO B/BOITHE GONBHO.

C. O.TopunHCKUH

Jlymaro, y Bcex Hac aTa Tparudeckas HOBOCTb HUKaK He IIOMeIaeTcs
B T'OJIOBE.

A 3Han Jlenry MHOTO JIeT, HaUMHAasA C ero epBoro Kypca yHUBEpPCHU-
TeTa, MBI MHOTOMY YYWJINCH C HIM BMeCTe, XOAWIN Ha OJHU CEMUHAPHL.
OTO0 OBLT ApYANIINLL YeTOBEK.

HagepHoe, B MockBe 60J1blIle TIOUTU HET JII0ZeH, KOTOPHIE TaKXKe KaK
Jlema MpeKpacHO TIOHUMAIOT alrebpandecKyio U apudMeTUIeCKyIo Teo-
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METPHIO, B TO JKe BpeMsI CBOOOZHO BIaJEIOT IPOABUHYTEIMU METOAAMMU
aQHAJIUTUYECKOH TEOPUU YHCE, U ICHO MMOHNUMAIOT IPWIOXKEHUA K KOJH-
POBaHUIO U KpUNTOrpaduu. JTO YAUBUTEIBHOE COYeTaHUe ITPOXO/IIIO
yepes3 Bce MaTeMaTHuecKoe TBopuecTBO Jlemu. M3 ero paHHUX pe3yJib-
TaTOB MHE XOUeTCs BCIIOMHUTD CYIIECTBEHHOE yCHIEHNE KJIaCCUIECKOH
TeopeMbl Bpayapa—3uresis o MoBeZIeHUU PerynaTopa U AUCKPUMUHAHTA
JUI IIMPOKOT'O PsZia TOCIeZ0BaTeNbHOCTEN YUCIOBHIX Ioneil. BmecTe
¢ ®.JlebakoM UM 6BUIa MOJMydYeHAa HOBas TOHKas OlleHKa Ha Jiorapud-
MUYECKYIO TIPOM3BOAHYIO A3eTa-QyHKIMI MT0OaTbHBIX TTOMEH, KOTopas
6bUTa UMM IpUMEHEHa /I JajeKoro 006oOuieHus SBHOM GOpMyJBl B
camoti TeopeMe BEpayapa—3uress. Jlelia MHTEHCUBHO pPa3BUBAJ TEOPHUIO
ACUMITOTHYECKUX J3eTa-QyHKIMH, pacmupssa ee Ha CIydail ceMeicTB
MozayApHEIX GopM. OH 3amoxwi QyHAaMeHTaJIbHBIE OCHOBBHI OOIeit
aCHMIITOTUYECKON TEOpUH A3eTa-GyHKINUN MHOrooOpasuil Haj KOHEY-
HbIMH TTOAMH. COBMECTHO C COAaBTOpaMH, Jlela OTBETHJI Ha BaXKHBIN
BoIIpoc Benukoro Mmatematuka JK.-I1. Ceppa o ToM, Kak Olpe/ieIUTh, B-
JIsieTCs U IKOOMaHOM KPHUBOW ITIaBHOIONAPU30BaHHOE abeseBO Tpex-
MepHOe MHOT0o06pa3ue HaZ He anrebpandecKy 3aMKHYTHIM TOJIEM HyJle-
BOI XapaKTepucTHUKU. Cepp 6bUI BLICOKOTO MHEHUS 06 3TOM pe3yJIbTaTe.
Jlema OGbUT OYEeHb XOPOUIMM HaJeXHBIM ToBapuieM. K Hemy Bcerza
MOXKHO GBUIO OOpPATUTHCS 3a MIOMOIIBIO. YIUBUTENBHO, KaK OZMHAKOBO
BHUMATEJIbHO U TEPIEJIUBO OH OTHOCWICSA KO BCEM OKPYXKAIOIIUM €ro
JIIOZISIM.

OH OYeHb YYTKO OIIYIIaj >KU3Hb, ObUT BLICOKUM IIEHUTEJEM IIpe-
KpacHOro B Hell. Ero TOHKUI BKyC HPOSIB/SUICA JajeKo 3a MpeaeraMu
MaTeMaTHKH, B UCKYCCTBE, OOIIEHUU C JIIOJbMU, SA3BIKaX, YBICUEHUAX.
Jlema 6pUT HA PEJKOCTD MIUPOKO 06pa30BaHHBIM Y€IOBEKOM, HalIPUMED,
XO4YeTCs BCIIOMHUTB €T0 TITyO0KOe 3HAHUeE JINTePaTyprl, 0cOOeHHO bpaH-
Iy3cKoii. Jlenra 66U1 paHTaCTHYECKUM OPraHU3aTOPOM, HEBEPOSATHO CO-
YyeTast MATKOCTh ¥ TAKTUYHOCTD B OOLIEHUY C JIFOABMHU CO CITIOCOOGHOCTHIO
ZOBOZIUTD BCe Jlefia I0 KOHIIA B COBEPIIEHHOM BHE.

[Tycts mamsaTh o Jlelte GyZeT BeuyHOM. /[aBaliTe 4allle €ro BCIIOMU-
HaTh, TaK MBI MOXXeM [IOMOYb eMy Tellepb.

A.H.Pyaakos

Kak yxxacHo! Anema 3bIKWH, MOJIOZOM, SHEPTUUYHBIA U BeCeIbIi —
TaKUM OH OBUI BCErZa B KOPUZOPAX U KOMHATaX Hallero 3JaHus Ha Ba-
BIJIOBA TaK HeZIaBHO — U €0 YKe HeT Ha 3ToH 3eMite. [7y60Ko ckopbiiro
U co60JIE3HYIO POAHBEIM U OIIU3KHUM, APY3bsAM U Kojieram!
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C.A.JIokTeB

Azexceli 3a 32 roga IpoXXwul APKyI0 U MHTEePeCHYIO XKU3Hb. MHe 1I0-
CYACT/IMBWIOCH XOPOILO y3HATh €ro M Kak Kojulery (Mbl BMecTe y4uiIu
MaTeMaTUYeCKOMY aHalIu3y CTyZeHTOB MaTdaka Beimycka 2014 roga), u
Kak Zipyra (Mpl BMeCTe 3aHUMaJIUCh CKajoa3aHueM, BMecTe e3/WIu Ha
Bopron u B O1bp-Hoppo).

S xoTes 61 OTMETHTSD /IBA €T0 KAUeCTBA, KAKUM OH 3aIIOMHUIICS. Bo-
MIEPBBIX, 9TO — AMETAHTHOCTb, KOTOpas 6pocasach B I7a3a C MEPBBIX MU-
HyT o6ueHus ¢ HUM. OH ObLT IIOTPsCAOllle TAKTUYEH, U B TO XKe BpeMs
HICKPEHEH, OTKPBIT KO BCEMY HOBOMY M HEOOBIYHOMY, IIEHWJI JKU3Hb BO
BCeX ee IIPOABIEHUAX.

Bo-BTOPBIX, U 3TO XOPOIIO 3HAJIHU €r0 IPy3bs, OH ObUI O-HACTOAIIIE-
My GeccTparieH. He B TOM CMBIC/Ie, YTO He HCIIBITHIBAT CTPaX, a B TOM,
YTO CTPaX HUKOI/ZA He 0OyCIaBIUBAJ €0 MBICIH U JeHCTBUYS.

Hama nepemnucka o60pBaach Ha TOM, YTO «CE€30H I0XKeH 3aKaHIH-
BaeTCA — KU3Hb CTAHOBUTCA elle JIydllle». fl He ycIesl eMy OTBeTUTb. ..

I[TycTh cBeTIas maMATh O Jlemre mpeObIBaeT B HAIIUX cepALax!

A.T. Ceprees

I omresToMIeH HOBOCTBIO O THOEH AjleKcess SBIKMHA U €r0 JKEHBI BO
BpeMs JaiiBUHTA.

MHe f0Besoch IPUHATH, XOTA U GopMasbHOE yJacTHe B ero CyJb-
6e, Oyay4u ero PyKOBOAWUTENEM B aclUpaHType. DTO ObLT MPUATHBIA U
6€e3yCJIOBHO OYeHb CIIOCOOHBIN MaTeMaTHK.

OueHb Kajb TepATh TAaKUX MOJIOABIX JIIOZel, Kor/ia U TaK MBI IIOCTO-
SIHHO OIIyIllaeM UX HEeXBaTKYy.

[TprcoeUHSIOCH K COO0JIE3HOBAHUAM POAUTEIIM AJIEKCes U €ro JKe-
HBL

B. A. Kupu4eHKO

S momHIo Jlerry IKOJbHUKOM. B ZIeBATOM KJacce yke ObLIO OYeBHUI-
HO, YTO OH MareMaTukK. Ha IpoTssKeHWM Tpex JIeT ZiBa pasa B HEIENI0
Jlelra cziaBajl MHe 3aZlauyl M3 JIMCTKOB IO KMaTaHaIU3ykb. B JlemuHom
KJIacce IIKOJbHUKOB IIPUKPEIUBUIN K CTyZIeHTaM (TO eCTh, CIaBaTh 3a/1a-
YU MOKHO OBUIO TOJIBKO «CBOEMY» CTYZEHTY), @ MEHsI KaK pa3 Ha3HAYMIN
CTyZAeHTOM i1 Jlemru.

Ve Torga Jlemy oTuyan dyHaaMeHTaIbHBIN mogxoa. OH HUKOTZAA
He CTPEMWICS PEIINTh 3aa4y CAMbIM JEIIEeBBIM X KOPOTKHUM CIIOCO-
60M, JUIIb OB CKOpel cAaTh W TMOMYyYUTh IUIFOCHMK. Hao6opoT, B Kaxk-
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[0l 3a7laue OH BH/EJ BO3MOXKHOCTD JeTalIbHO pa3obpaThes B boree 06-
meM Borpoce. Hanpumep, czaBas TpaJULIMOHHYIO /JIs TUCTKOB 3aZady
0 JAJMHE OKpy)XKHOCTH, Jlema cHavyasa pasobpas obilee ompezeneHue
JJIVHBL cpaAMIgeMoli KpuBod. CBou pemieHusa Jlema Bcerza cHadasla
3aIUCHIBAT B TETPaJb, U TeTPajiell IpU ero moaxoje TpeboBayoch Jo-
BOJIBHO MHOro. YacTo Imepes TeM KaK pacckasaTh OyepeZHOe 3y607po-
6uUTeNbHOE YTBEPXKAEHUE U3 o4YepegHOU TeTpaau Jlema roBopui «/lis
mymieli ACHOCTH JoKaXXeM ellle Takylo JeMMy». Ero He myraam HUKakue
CJIOXKHOCTH.

[Tpouwutu rozpsl, Jlema U3 MKOJIbHUKA CTaJI CAMBIM MOJIOABIM COTPYA-
HUKOM MaTdaka BrItku. MbI ¢ HUM 6bLTH Kojuteramu B VITITIN u B Beiii-
ke. OpgHako korza g fymato o Jlemie, B Moell maMATU B IIepByI0 odepesb
BO3HUKaeT ero obpas nmoutu 20-1eTHEN AaBHOCTH, 06pa3 JAeBATUKIIACC-
HUKa-MaTeMaTHKa, KOTOPBIN He OOUTCA UATH TPYAHBIM ITyTEM.
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Abstract. The classical Brauer—Siegel theorem states that if k runs

s
— O,
log |Dy|

— 1. First, in this paper we obtain the generalization

through the sequence of normal extensions of @ such that

log hkRk
then oz /o]
of the Brauer—Siegel and Tsfasman—Vladdut theorems to the case of
almost normal number fields. Second, using the approach of Hajir and
Maire, we construct several new examples concerning the Brauer—
Siegel ratio in asymptotically good towers of number fields. These ex-
amples give smaller values of the Brauer—Siegel ratio than those given
by Tsfasman and Vladut.

1. Introduction

Let K be an algebraic number field of degree ny =[K : Q] and dis-
criminant Dg. We define the genus of K as gx =log 1/Dg. By hy we de-
note the class-number of K, Ry denotes its regulator. We call a sequence
{K;} of number fields a family if K; is non-isomorphic to K; for i # j. A
family is called a tower if also K; C K;; for any i. For a family of number
fields we consider the limit

BS(x) := lim %
i—o K;
The classical Brauer—Siegel theorem, proved by Brauer (see [1]), states
that for a family # ={K;} we have BS(.#) =1 if the family satisfies two
conditions:
Ng.
() lim —=0;

1—® SK;
(ii) either the generalized Riemann hypothesis (GRH) holds, or all the
fields K; are normal over Q.

Alexei Zykin, The Brauer—Siegel and Tsfasman—Vlddut theorems for almost normal
extensions of number fields, Moscow Mathematical Journal, 5 (2005), no. 4, 961—968.
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We call a number field almost normal if there exists a finite tower
of number fields Q =K, € K; C ... CK,, =K such that all the extensions
K;/K;_, are normal. Weakening the condition (ii), we prove the follow-
ing generalization of the classical Brauer—Siegel theorem to the case of
almost normal number fields:

Theorem 1. Let & ={K;} be a family of almost normal number fields
for which ny /gx. — 0 as i — . Then we have BS(#) =1.

It was shown by M. A. Tsfasman and S. G.Vladut that, taking in ac-
count non-archimedian places, one may generalize the Brauer—Siegel
theorem to the case of extensions where the condition (i) does not hold.

For a prime power g we set

Ny(Ky) = |{v € P(K;): Norm(v) = q}|,

where P(K;) is the set of non-archimedian places of K;. We also put
Ny (K;) =r(K;) and N (K;) =1, (K;), where r; and r, stand for the num-
ber of real and (pairs of) complex embeddings.

We consider the set A={R, C; 2,3,4,5,7,8,9, ...} of all prime pow-
ers plus two auxiliary symbols R and C as the set of indices. A family
A ={K;} is called asymptotically exact if and only if for any a € A the
following limit exists:

bu= du () = lim N2,

We call an asymptotically exact family ¢ asymptotically good (respec-
tively, bad) if there exists a € A with ¢, > 0 (respectively, ¢, =0 for
any a € A). The condition on a family to be asymptotically bad is, in
the number field case, obviously equivalent to the condition (i) in the
classical Brauer—Siegel theorem. For an asymptotically good tower of
number fields the following generalization of the Brauer—Siegel theorem
was proved in [11]:

Theorem 2 (Tsfasman—Vladut Theorem, see [11, Theorem 7.3]).
Assume that for an asymptotically good tower & fields any of the following
conditions is satisfied:

* GRH holds;

¢ all the fields K; are almost normal over Q.

loghg Ry
Then the limit BS(%) =lim —————

[—o

BS(%)=1+Z¢qlogqu1—¢Rlog2—¢clog2n, @®
q

exists and we have:

K;

the sum beeing taken over all prime powers q.
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For an asymptotically bad tower of number fields we have ¢ =0
and ¢ =0 as well as ¢, =0 for all prime powers g, so the right hand
side of the formula (1) equals to one. We also notice that the condition

Ng.
on a family to be asymptotically bad is equivalent to lim —=0. So,

i—o &K;
combining our Theorem 1 with Theorem 2 we get the following corollary:

Corollary 3. For any tower 2 ={K;}, K; CK, C... of almost normal
number fields the limit BS(¢') exists and we have:

BS(x) = lim bg(gﬂ = 1+Z¢q logqu1 — ¢plog2 — ¢ log2m,
1— i q
the sum beeing taken over all prime powers q.

In [11] bounds on the ratio BS(:#) were given, together with ex-
amples showing that the value of BS(.#") may be different from 1. We
corrected some of these erroneous bounds and managed to precise a few
of the estimates in the examples. Also, using the infinite tamely ramified
towers, found by Hajir and Maire (see [3]), we get (under GRH) new
examples, both totaly complex and totally real, with the values of BS(¢")
smaller than those of totally real and totally complex examples of [11].
The result is as follows:

Theorem 4. 1. Let k=Q(&), where & is a root of

F) = x84+ x*—4x% —7x% —x+1,

K = k(y/E5 — 46754+ 9943 — 3360£2 — 2314& +961).

Then K is totally complex and has an infinite tamely ramified 2-tower X,

for which, under GRH, we have:
BS;yue < BS(#) < BS

upper>

where BS)gyer 70.56498..., BS ,ne, ~#0.59748....
2. Let k=Q(&), where & is a root of

Fx) = x® — x° — 10x* + 4x> +29x2 +3x — 13,

K = k(4/—2993&5 + 723084 + 18937E3 — 38788£2 — 320968 + 44590).

Then K is totally real and has an infinite tamely ramified 2-tower &, for
which, under GRH, we have:

BSower < BS(#) < BS
where BS;yyer 7 0.79144..., BS

upper>

upper & 0.81209....
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However, unconditionally (without GRH), the estimates for totally
complex fields that may be obtained using the methods developed by
Tsfasman and VIadut lead to slightly worse results, than those already
known from [11]. This is due to a rather large number of prime ideals
of small norm in the field K. For the same reasons the upper bounds for
the Brauer—Siegel ratio for other fields constructed in [3] are too high,
though the lower bounds are still good enough.

Finally we present the table (the ameliorated version of the table
of [11]), where all the bounds and estimates are given together:

lower lower upper upper

bound example example bound

all fields 0.5165 0.5649—0.5975 1.0602—1.0798 1.0938

GRH totally real 0.7419 0.7914—0.8121 1.0602—1.0798 1.0938
totally complex | 0.5165 0.5649—0.5975 1.0482—1.0653 1.0764

all fields 0.4087 0.5939—0.6208 1.0602—1.1133  1.1588

Unconditional | totally real 0.6625 0.8009—0.9081 1.0602—1.1133  1.1588
totally complex | 0.4087 0.5939—0.6208 1.0482—1.1026 1.1310

2. Proof of Theorem 1

Let {x(s) be the Dedekind zeta function of the number field K and
x its residue at s =1. By wy we denote the number of roots of unity in
K, and by rp, r, the number of real and complex places of K respectively.
We have the following residue formula (see [4, Ch. VIII, § 3]):

_27(27)hgRy
Wy +/ Dy .
Since

Vwg/2 < (wg) =[Q(C,,) : QI S [K: Q] =ng,

we note that wy < 2n% so log wK],/ 8k, — 0. Thus, it is enough to prove
that log ij/ log Dg, — 0.

As for the upper bound we have

Theorem 5 (See [5, Theorem 1]). Let K be a number field of degree
n= 2. Then,

elog Dy \n—1
% < (315) )
Moreover, 1/2<p <1 and {x(p) =0 imply
log Dy \n
< A-p)(5 ") 3
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Using the estimate (2) we get (even without the assumption of al-
most normality) the “easy inequality”:

gDKJ) - 0.

log X, n;—

logDK logD

(log 5 +log

As for the lower bound the business is much more tricky and we will
proceed to the proof after giving a few preliminary statements.

Let K be a number field other than Q. A real number p is called an
exceptional zero of {(s) if {x(p) =0 and

1-(4logD) '<p<1;
an exceptional zero p of {(s) is called its Siegel zero if
1-(16logDy) ' <p < 1.

Our proof will be based on the following fundamental property of
Siegel zeroes proved by Stark:

Theorem 6 (see [10, Lemma 10]). Let K be an almost normal num-
ber field, and let p be a Siegel zero of {(s). Then there exists a quadratic
subfield k of K such that {;.(p) =0.

The next estimate is also due to Stark:

Theorem 7 (See [10, Lemma 4] or [6, Theorem 1]). Let K be a num-
ber field and let p be the exceptional zero of {x(s) if it exists and p =
=1—(4logDg) ! otherwise. Then there is an absolute constant ¢ <1 (ef-
fectively computable) such that

xg > c(1—p). 4)

Our proof of Theorem 1 will be similar to the proof of the classical
Brauer—Siegel theorem given in [7]. We will use the Brauer—Siegel re-
sult for quadratic fields, a simple proof of which is given in [2]. There
are two cases to consider.

1. First, assume that ¢ K (s) has no Siegel zero. From (4) we deduce
that

XK; >cl-p) = C(l - (1 - 16101gDKj )) - 1610CgDKj' ®)

2. Second, assume that there exists a Siegel zero p of ¢ k,;(s). From
Theorem 6 we see that there exists a quadratic subfield k; of K; such that
4 k; (p) =0. Applying (3) and (4) we obtain:

xS c1-p) 16¢

K; x. ks elongj )2 k; ezlogszj k; (6)

: a-p(—
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If the number of fields K; for which the second case holds is finite,
then, using the fact that logDKj — oo we get the desired lower estimate
from (5).

Otherwise, we note that for a number field there exists at most one
exceptional zero (See [10, Lemma 3], so, applying this statement to the
fields k;, we get that only finitely many of them may be isomorphic to
each other and so Dy, — o as j— . Thus we may use the Brauer—Siegel
result for quadratic fields:

log x;., log x;,

log Dy, = log Dy — 0.

Finally from (6), we get:

long], o 16c _zloglong], N logxkj
log Dy, - ezlogDKj log Dy, log Dy,

— 0.

This concludes the proof. O

Remark 8. Our proof of Theorem 1 is explicit and effective if all
the fields in the family # contain no quadratic subfield and thus the
corresponding zeta function does not have Siegel zeroes.

3. Proof of Theorem 4

First we recall briefly some constructions related to class field towers.
Let us fix a prime number ¢. For a finitely generated pro-¢ group G, we
let d(G) = dimm H'(G, F,) be its generator rank. Let T be a finite set
of ideals of a number field K such that no prime in T is a divisor of £.
We denote by K; the maximal ¢-extension of K unramified outside T,
Gy =Gal(K;/K). We let

9 { 1, if T # @ and K contains a primitive £th root of unity;
KT =

0, otherwise.

Then we have (see [9, Theorems 1 and 5]):

Theorem 9. If d(Gy) = 2+ 2,/r (K) +1,(K) + 0 1, then Ky is infi-
nite.

To estimate d(Gy) we use the following theorem

Theorem 10 (See [8, Section 2]). Let K/k be a finite Galois exten-
sion, 1, =11(k), r, =r1y(k), p be the number of real places of k, ramified
in K, t be the number of primes in k, ramified in K. We set 6, =1, if k
contains a primitive root of degree £ of unity and 6, =0 otherwise. Then
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we have:
d(Gy) 2d(Gy) =2 t—r—1r+p—0,.

The number field arithmetic behind the construction of our theo-
rem 4 was mainly carried out with the help of the computer package
pARI. However, we would like to present our examples in the way suitable
for non-computer check. We give here the proof of the first part of our
theorem, as the proof of the second part is very much similar and may
be carried out simply by repeating all the steps of the proof given here.

We let k = Q(&), where £ is a root of f(x)=x%+x*—4x—7x?—x+1.
Then k is a field of signature (4, 1) and discriminant d ; =d; =—23-35509.
Its ring of integers is 0, =Z[£] and its class number is equal to 1. The
principle ideal of norm 7-13-19%-23%-29-31 generated by

n = 671&° —467&* +994&° — 3360 — 2314 + 961

factors into eight different prime ideals of g,. In fact, one may see that
— / /
)= TT7 13197 923y Mg T3y, Where

n, = —9E°+6E*—138% +44£2 4318 - 12,
T3 = —7E°4+5E% — 1183 +36£2 4235 -9,
Tig = 5&° —4E*+88% —26£% — 158 + 6,

mhy = 58°—3E*+78% —248% — 208 +6,

Tyy = —58° +4E%— 853+ 2652+ 15 — 9,
Ty, = 66° —45%+98% —308% — 228 46,

Tag = 11E° —8E*+178% — 5652 — 35 + 16,
Ty = 7E° —5E 41183 —36E% — 228 +7.

K =k(,/m) is a totally complex field of degree 12 over (@ with the relative
discriminant Py ;. equal to () as n = > +4y, where f=E°>+&*+£°+1,
y=—173E>+112E% — 270&3 + 815&% + 576& — 237. From this we see
that d =7-13-192-232-29-31-232-35509%. From Theorem 10 we
deduce that

d(Gy) = t—r (k) —rp(k)+p—1=8—4—1+4—1=6.

The right hand side of the inequality from Theorem 9 is equal to 2 +2+v/6 ~
A 6.8989 < 7, so it is enough to show that d(G;) > d(Gg), and to do this
it is enough to construct a set of prime ideals T and an extension of K,
ramified exactly at T.



42 The Brauer—Siegel and Tsfasman—Vl1idut Theorems

Let T3 = —6&° +4E% — 9&3 +30E2 + 21& — 7 be the generator of a
prime ideal of norm 3 in @, and T be the set consisting of one prime
ideal of 0y over m50,. We see that

TyMye = 118° —8E* +178% — 5687 — 35 + 14 = p® + 40,

where p =8>+ &3+ &2+ 1, 0 =28° — 8% —14&3 — 2882 —9E + 5, s0
k(,/T3T19)/k is ramified exactly at 5 and 7,9. But 74 already ramifies
in K that is why K(,/T3719)/K is ramified exactly at T. Thus we have
showed that d(G;) = 7 and K /K is indeed infinite.

To complete our proof we need a few more results.

Theorem 11 (GRH Basic Inequality, see [11, Theorem 3.1]). For an
asymptotitically exact family of number fields under GRH one has:

5 ¢qlogq

Y
q 1 T ¢a(log2v2m+ Z4 )+ dclog8nin <L ()

the sum beeing taken over all prime powers q.
Theorem 12 (See [3, Theorem 1]). Let K be a number field of degree

n over Q, such that Ky is infinite and assume that Ky = | J K;. Then
i=1

> log(Ny/p)
i T
lim3 < Sl
i—ow I ng 2ng
For our previously constructed field K the genus is equal to gy ~
~25.3490... From Theorem 12 we easily see that ¢y =0 and

12 12
L < < ==
2gx+2log3 = bc S 2gx’

i.e., 0.23669 < ¢ < 0.22687. The lower bound for BS(K;) is clearly
equal to

BSiower = 1 — ¢ log2 — ¢ log(2m) < 0.56498....

Knowing the decomposition in K of small primes of Q, we may now apply
the linear programming approach to get the upper bound for BS(Ky).
This is done using the explicit formula (1) for the Brauer—Siegel ratio
along with the basic inequality (7) and the inequality

o0

mé,m < dg+2¢¢,

m=1
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taken as the restrictions. This was done using the PARI package. As the
calculations are rather cumbersome we will give here only the final re-
sult: BSpper ~#0.59748..., and the bound is attained for ¢, = g =13 =
=0.03944..., $,,=0.01002... O
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On the generalizations
of the Brauer—Siegel theorem

Abstract. The classical Brauer—Siegel theorem states that if k runs
. n
through the sequence of normal extensions of @ such that ——— — 0,

oglbg
log(hiRy) ) ] - logIDyl
then ———= — 1. In this paper we give a survey of various generaliza-
log +/|Dy|

tions of this result including some recent developements in the study of
the Brauer—Siegel ratio in the case of higher dimensional varieties over
global fields. We also present a proof of a higher dimensional version
of the Brauer—Siegel theorem dealing with the study of the asymptotic
properties of the residue at s =d of the zeta function in a family of
varieties over finite fields.

1. Introduction

Let K be an algebraic number field of degree ny =[K : Q] and dis-
criminant Dy. We define the genus of K as gx =log 1/Dy. By hy we de-
note the class-number of K, Ry denotes its regulator. We call a sequence
{K;} of number fields a family if K; is non-isomorphic to K; for i #j. A
family is called a tower if also K; C K, ; for any i. For a family of number
fields we consider the limit

log(hy. Ry.)
BS(#) := lim —o kK
11— K;
The classical Brauer—Siegel theorem, proved by Brauer (see [3]) can be
stated as follows:
Theorem 1.1 (Brauer—Siegel). For a family # ={K;} we have
log(hy. Ry.)
BS() := lim —— K _

i—o0 8k;

if the family satisfies two conditions:

(ii) either the generalized Riemann hypothesis (GRH) holds, or all the
fields K; are normal over Q.
Alexey Zykin, On the generalizations of the Brauer—Siegel theorem, Arithmetic, geom-

etry, cryptography and coding theory, Contemporary Mathematics, vol. 487, Amer. Math.
Soc., Providence, RI, 2009, 195—206.
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The initial motivation for the Brauer—Siegel theorem can be traced
back to a conjecture of Gauss:

Conjecture 1.2 (Gauss). There are only 9 imaginary quadratic fields
with class number equal to one, namely those having their discriminants
equal to —3, —4, —7, —8, —11, —19, —43, —67, —163.

The first result towards this conjecture was proven by Heilbronn in
[11]. He proved that hy — © as Dy — —. Moreover, together with Lin-
foot [12] he was able to verify that Gauss’ list was complete with the
exception of at most one discriminant. However, this “at most one” part
was completely ineffective. The initial question of Gauss was settled inde-
pendently by Heegner [10], Stark [28] and Baker [1] (initially the paper
by Heegner was not acknowledged as giving the complete proof). We
refer to [35] for a more thorough discussion of the history of the Gauss
class number problem.

A natural question was to find out what happens with the class num-
ber in the case of arbitrary number fields. Here the situation is more
complicated. In particular a new invariant comes into play: the regulator
of number fields, which is very difficult to separate from the class num-
ber in asymtotic considerations (in particular, for this reason the other
conjecture of Gauss on the infinitude of real quadratic fields having class
number one is still unproven). A major step in this direction was made by
Siegel [27] who was able to prove Theorem 1.3 in the case of quadratic
fields. He was followed by Brauer [3] who actually proved what we call
the classical Brauer—Siegel theorem.

Ever since a lot of different aspects of the problem have been studied.
For example, the major difficulty in applying the Brauer—Siegel theorem
to the class number problem is its ineffectiveness. Thus many attempts
to obtain good explicit bounds on hy Ry were undertaken. In particular
we should mention the important paper of Stark [29] giving an explicit
version of the Brauer—Siegel theorem in the case when the field contains
no quadratic subfields. See also some more recent papers by Louboutin
[21], [22] where better explicit bounds are proven in certain cases. Even
stronger effective results were needed to solve (at least in the normal
case) the class-number-one problem for CM fields, see [15], [25], [2].

In another direction, assuming the generalized Riemann hypothesis
(GRH) one can obtain more precise bounds on the class number then
those given by the Brauer—Siegel theorem. For example in the case of
quadratic fields we have hy < D11</ *(loglog Dy /log Dy). In particular they
are known to be optimal in many cases (see [5], [6], [4]).
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A full survey of the problems stemming from the study of the Brauer—
Siegel type questions definitely lies beyond the scope of this article. Our
goal is more modest. Here we survey the results that generalize the
classical Brauer—Siegel theorem. In § 2 the case of families of number
fields violating one (or both) of the conditions (i) and (ii) of theorem 1.3
is discussed. In particular we introduce the notion of Tsfasman—Vladut
invariants of global fields that allow to express the Brauer—Siegel limit
in general. In § 3 we survey the known results and conjectures about the
Brauer—Siegel type statements in the higher dimensional situation. Fi-
nally, in the last § 4 we prove a Brauer—Siegel type result (Theorem 3.2)
for families of varieties over finite fields. This theorem expresses the
asymptotic properties of the residue at s =d of the zeta function of
smooth projective varieties over finite fields via the asymptotics of the
number of Fyn-points on them.

2. The case of global fields: Tsfasman—Vladut approach

A natural question is whether one can weaken the conditions (i) and
(ii) of Theorem 1.3. The first condition seems to be the most restrictive
one. Tsfasman and Vladut were able to deal with it first in the function
field case [31], [32] and then in the number field case [33] (which was
as usual more difficult, especially from the analytical point of view). It
turned out that one has to take in account non-archimedian place to
be able to treat the general situation. Let us introduce the necessary
notation in the number field case (for the function field case see § 3).

For a prime power g we set

®,(Ky) = {v € P(K;) : Norm(v) = q}|,

where P(K;) is the set of non-archimedian places of K;. Taking in account
the archimedian places we also put ¢ (K;) =r;(K;) and - (K;) =r,(K};),
where 1, and r, stand for the number of real and (pairs of) complex
embeddings.

We consider the set A={R, C; 2,3,4,5,7,8,9, ...} of all prime pow-
ers plus two auxiliary symbols R and C as the set of indices.

Definition 2.1. A family .# = {K;} is called asymptotically exact if
and only if for any a € A the following limit exists:

by = P () = lim M.
i»w 8K

We call an asymptotically exact family ¢ asymptotically good (respec-
tively, bad) if there exists a € A with ¢, > 0 (respectively, ¢, =0 for
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any a € A). The ¢, are called the Tsfasman—Vladut invariants of the
family {K;}.

One knows that any family of number fields contains an asymptotically
exact subfamily so the condition on a family to be asymptotically exact is
not very restrictive. On the other hand, the condition of asymptotical good-
ness is indeed quite restrictive. It is easy to see that a family is asymptoti-
cally bad if and only if it satisfies the condition (i) of the classical Brauer—
Siegel theorem. In fact, before the work of Golod and Shafarevich [9]
even the existence of asymptotically good families of number fields was
unclear. Up to now the only method to construct asymptotically good fam-
ilies in the number field case is essentially based on the ideas of Golod and
Shafarevich and consists of the usage of classfield towers (quite often in
a rather elaborate way). This method has the disadvantage of beeing very
inexplicit and the resulting families are hard to control (ex. splitting of the
ideals, ramification, etc.). In the function field case we dispose of a much
wider range of constructions such as the towers coming from supersin-
gular points on modular curves or Drinfeld modular curves ([16], [34]),
the explicit iterated towers proposed by Garcia and Stichtenoth [7], [8]
and of course the classfield towers as in the number field case (see [26]
for the treatement of the function field case).

This partly explains why so little is known about the above set of in-
variants ¢,. Very few general results about the structure of the set of pos-
sible values of (¢,) are available. For instance, we do not know whether
the set {a | ¢, # 0} can be infinite for some family 2#". We refer to [20] for
an exposition of most of the known results on the invariants ¢,,.

Before formulating the generalization of the Brauer—Siegel theorem
proven by Tsfasman and Vladut in [33] we have to give one more defini-
tion. We call a number field almost normal if there exists a finite tower
of number fields Q =K, CK; C--- CK,, =K such that all the extensions
K;/K;_, are normal.

Theorem 2.2 (Tsfasman—Vladut). Assume that for an asymptoti-
cally good tower & any of the following conditions is satisfied:

* GRH holds;

e all the fields K; are almost normal over Q.

.. . log(hgRg)

Then the limit BS(4') =lim

11— K;

exists and we have:

BS(x) = 1+Z¢q logqu1 — ¢plog2—¢pclog2m,
q

the sum beeing taken over all prime powers q.
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We see that in the above theorem both the conditions (i) and (ii) of
the classical Brauer—Siegel theorem are weakend. A natural supplement
to the above theorem is the following result obtained by the author in [36]:

Theorem 2.3 (Zykin). Let # ={K;} be an asymptotically bad family
of almost normal number fields (i.e. a family for which ny /gy, — 0 as
i— ). Then we have BS(%¢) =1.

One may ask if the values of the Brauer—Siegel ratio BS(.%") can re-
ally be different from one. The answer is “yes”. However, due to our lack
of understanding of the set of possible (¢,) there are only partial results.
Under GRH one can prove (see [33]) the following bounds on BS(%):
0.5165 < BS(%) < 1.0938. The existence bounds are weaker. There is
an example of a (class field) tower with 0.5649 <BS(#) <0.5975 and
another one with 1.0602 < BS(¢) < 1.0938 (see [33] and [36]). Our
inability to get the exact value of BS(') lies in the inexplicitness of
the construction: as it was said before, class field towers are hard to
control. A natural question is whether all the values of BS(.¢") between
the bounds in the examples are attained. This seems difficult to prove
at the moment though one may hope that some density results (i. e. the
density of the values of BS(%") in a certain interval) are within reach of
the current techniques.

Let us formulate yet another version of the generalized Brauer—
Siegel theorem proven by Lebacque in [19]. It assumes GRH but has the
advantage of beeing explicit in a certain (unfortunately rather weak)
sense:

Theorem 2.4 (Lebacque). Let ¢ ={K;} be an asymptotically exact
family of number fields. Assume that GRH in true. Then the limit BS(")
exists, and we have:

3 ¢, logqul — ¢ log2 — ¢ log2m = BS(H) + 0

qsx

1
)

This theorem is an easy corollary of the generalised Mertens theorem
proven in [19]. We should also note that Lebacque’s apporoach leads to a
unified proof of Theorems 2.2 and 2.3 with or without the assumption of
GRH.

3. Varieties over global fields

Once we are in the realm of higher dimensional varieties over global
fields the question of finding a proper analogue of the Brauer—Siegel
theorem becomes more complicated and the answers which are currently
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available are far from being complete. Here we have essentially three
approaches: the one by the author (which leads to a fairly simple result),
another one by Kunyavskii and Tsfasman and the last one by Hindry and
Pacheko (which for the moment gives only plausible conjectures). We
will present all of them one by one.

The proof of the classical Brauer—Siegel theorem as well as those of
its generalisations discussed in the previous section passes through the
residue formula. Let { (s) be the Dedekind zeta function of a number
field K and xy its residue at s = 1. By wy we denote the number of roots
of unity in K. Then we have the following classical residue formula:

o = 22D R
K we/Dx
This formula immediately reduces the proof of the Brauer—Siegel theo-
rem to an appropriate asymptotical estimate for x as K varies in a family
(by the way, this makes clear the connection with GRH which appears in
the statement of the Brauer—Siegel theorem). So, in the higher dimen-
sional situation we face two completely different problems:

(i) Study the asymptotic properties of a value of a certain ¢ or L-function.
(ii) Find an (arithmetic or geometric) interpretation of this value.

One knows that just like in the case of global fields in the d-dimen-
sional situation zeta function {x(s) of a variety X has a pole of order
one at s =d. Thus the first idea would be to take the residue of {(s) at
s =d and study its asymptotic behaviour. In this direction we can indeed
obtain a result. Let us proceed more formally.

Let X be a complete non-singular absolutely irreducible projective
variety of dimension d defined over a finite field F, with q elements,
where g is a power of p. Denote by | X| the set of closed points of X. We
put X, =X ®, Fyr and X =X ®F, IF Let ¢,n be the number of places
of X having degree m, that is ®;n = [{p € |X| | deg(p) = m}|. Thus the
number N,, of F:-points of the Variety X, is equal to

N, = > m&m
mn

Let by(X) = dile H*(X, Q) be the l-adic Betti numbers of X. We set
b(X) =max;—; ,4b;(X). Recall that the zeta function of X is defined for
Re(s) >d by the following Euler product:

© Pm

=11 1= N(p) 5 :ngl(ﬁ) s

pelX|
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where N(p) = q_deg". It is known that {x(s) has an analytic continu-
tation to a meromorphic function on the complex plane with a pole of
order one at s =d. Furthermore, if we set Z(X, q™*) = {x(s) then the
function Z (X, t) is a rational function of t=q°.

Consider a family {X;} of complete non-singular absolutely irre-
ducible d-dimensional projective varieties over F,. We assume that the
families under consideration satisfy b(X i) when j — . Recall (see
[18]) that such a family is called asymptotically exact if the following
limits exist:

L P (X))
¢qm({X]’}) :]11_{27 ij), m=12,...

The invariants ¢~ of a family {X;} are called the Tsfasman—Vladu in-
variants of this family. One knows that any family of varieties contains
an asymptotically exact subfamily.

Definition 3.1. We define the Brauer—Siegel ratio for an asymptot-
ically exact family as

. log|x(X)|
BS({X;}) = jlglgo X))
where x(X;) is the residue on(Xj, t) at t:q‘d.
In § 4 we prove the following generalization of the classical Brauer—
Siegel theorem:
Theorem 3.2. For an asymptotically exact family {X;} the limit
BS({X;}) exists and the following formula holds:

o md
BS(X;1) = 3 ¢rlog qni—_l &)

However, we come across a problem when we trying to carry out
the second part of the strategy sketched above. There seems to be no
easy geometric interpretaion of the invariant x(X) (apart from the case
d =1 where we have a formula relating xy to the number of I -points
on the Jacobian of X). See however [23] for a certain cohomological
interpretation of x(X).

Let us now switch our attention to the two other approaches by Kun-
yavskii—Tsfasman and by Hindry—Pacheko. Both of them have for their
starting points the famous Birch—Swinnerton-Dyer conjecture which ex-
presses the value at s =1 of the L-function of an abelian variety in terms
of certain arithmetic invariants related to this variety. Thus, in this case
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we have (at least conjecturally) an interpretation of the special value
of the L-function at s = 1. However, the situation with the asymptotic
behaviour of this value is much less clear. Let us begin with the approach
of Kunyavskii—Tsfasman. To simplify our notation we restrict ourselves
to the case of elliptic curves and refer for the general case of abelian
varieties to the original paper [17].

Let K be a global field that is either a number field or K = Fq (X)
where X is a smooth, projective, geometrically irreducible curve over a
finite field ;. Let E/K be an elliptic curve over K. Let III := [III(E)| be
the order of the Shafarevich—Tate group of E, and A the determinant of
the Mordell—Weil lattice of E (see [30] for definitions). Note that in a
certain sense III and A are the analogues of the class number and of the
regulator respectively. The goal of Kunyavskii and Tsfasman in [17] is to
study the asymptotic behaviour of the product IIT- A as g — «. They are
able to treat the so-called constant case:

Theorem 3.3 (Kunyavskii—Tsfasman). Let E =E, xg, K where E, a
fixed elliptic curve over Fy. Let K vary in an asymptotically exact fam-
ily {K;} ={F, (X))}, and let ¢gn = ¢ ({X;}) be the corresponding Tsfas-
man—Vlddut invariants. Then

log, (H-Ii'Ai) N (Eo)
m—t

=1- 21 Pgn log,

1— i
where N, (Eg) = |Eq(Fgn)|.

Note that there is no real need to assume the above mentioned Birch
and Swinnerton-Dyer conjecture as it was proven by Milne [24] in the
constant case. The proof of the above theorem uses this result of Milne to
get an explicit formula for IIT- A thus reducing the proof of the theorem
to the study of asymptotic properties of curves over finite fields the latter
ones being much better known.

Kunyavskii and Tsfasman also make a conjecture in a certain non con-
stant case. To formulate it we have to introduce some more notation. Let E
be again an arbitrary elliptic K-curve. Denote by & the corresponding ellip-
tic surface (this means that there is a proper connected smooth morphism
f: & — X with the generic fibre E). Assume that f fits into an infinite Ga-
lois tower, i. e. into a commutative diagram of the following form:

g:go gl vee éﬂi

N

X=X0 Xl “ee Xi
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where each lower horizontal arrow is a Galois covering. For every v € X

closed point in X, let E, = f~(v). Let &, ; denote the number of points

of X; lying above v, ¢, =1lim &, ;/g; (we suppose the limits exist). Fur-
[—o0

thermore, denote by f, ; the residue degree of a point of X; lying above
v (the tower being Galois, this does not depend on the point), and let
fp=1lim f, ;. If f, = o, we have ¢, =0. If f, is finite, denote by N(E,, f,)

the number of Fyy, -points of E,. Finally, let T denote the “fudge” factor
in the Birch and Swinnerton-Dyer conjecture (see [30] for its precise
definition). Under this setting Kunyavskii and Tsfasman formulate the
following conjecture in [17]:

Conjecture 3.4 (Kunyavskii—Tsfasman). Assuming the Birch and
Swinnerton-Dyer conjecture for elliptic curves over function fields, we have

log, (IL; - A; - 7)) N(E,, f,)
= Tl ples g

Let us finally turn our attention to the approach of Hindry and
Pacheko. They treat the case in some sense “orthogonal” to that of Kun-
yavskii and Tsfasman. Here, contrary to the previous setting of this
section, we consider the number field case as the more complete one. We
refer to [14] for the function field case. As in the approach of Kunyavskii
and Tsfasman we study elliptic curves over global fields. However, here
the ground field K is fixed and we let vary the elliptic curve E. Denote
by h(E) the logarithmic height of an elliptic curve E (see [13] for the
precise definition, asymptotically its properties are close to those of the
conductor). Hindry in [13] formulates the following conjecture:

Conjecture 3.5 (Hindry—Pacheko). Let E; run through a family of
pairwise non-isomorphic elliptic curves over a fixed number field K. Then

n log(II;-A;)
=T

To motivate this conjecture, Hidry reduces it to a conjecture on the
asymptotics of the special value of L-functions of elliptic curves at s=1
using the conjecture of Birch and Swinnerton-Dyer as well as that of Szpiro
and Frey (the latter one is equivalent to the ABC conjecture when K = Q).

Let us finally state some open questions that arise naturally from the
above discussion.

* What is the number field analogue of Theorem 3.2?

It seems not so difficult to prove the result corresponding to Theo-
rem 3.2 in the number field case assuming GRH. Without GRH the situ-
ation looks much more challenging. In particular, one has to be able to
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controll the so called Siegel zeroes of zeta functions of varieties (that is
real zeroes close to s =d) which might turn out to be a difficult problem.
The conjecture 3.4 can be easily written in the number field case. How-
ever, in this situation we have even less evidence for it since Theorem 3.3
is a particular feature of the function field case.

* How can one unify the conjectures of Kunyavskii—Tsfasman and
Hindry—Pacheko?

In particular it is unclear which invariant of elliptic curves should
play the role of genus from the case of global fields. It would also be
nice to be able to formulate some conjectures for a more general type of
L-functions, such as automorphic L-functions.

* Is it possible to justify any of the above conjectures in certain par-
ticular cases? Can one prove some cases of these conjectures “on
average” (in some appropriate sense)?

For now the only case at hand is the one given by Theorem 3.3.

4. The proof of the Brauer—Siegel theorem for varieties
over finite fields: case s=d

Recall that the trace formula of Lefschetz—Grothendieck gives the
following expression for N, — the number of I, points on a variety X:

2d by
N, = Z (_Dsqns/z Z a?i’ 4.1)
s=0 i=1
where {g*/ 2a;} is the set of of inverse eigenvalues of the Frobenius en-

domorphism acting on H*(X, Q). By Poincaré duality one has b,;_, = b,
and a,; = ay4_,;. The conjecture of Riemann—Weil proven by Deligne
states that the absolute values of a;; are equal to 1. One also knows that
bo=1and ap; =1.

One can easily see that for Z (X, q~°) = {x(s) we have the following
power series expansion:

logZ(X,0) = N, 4.2)
Combining (4.2) and (4.1) we obtain "
ZX, 0= ﬁ(—1)s—lps(x, t), (4.3)
\ 5=0
where P(X,0)=]](1 - qs/zas’i). Furthermore we note that Py(X, t) =

i=1
=1—tand Py(X,t)=1—q%.
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To prove Theorem 3.2 we will need the following lemma.
Lemma 4.1. For ¢ — o we have
lOg|X(Xj)| < Nl(Xj)_qdl —dl
b(X}) _l§ 1 q +Rc(Xj),
with R.(X;) — 0 uniformly in j.
Proof of the Lemma. Using (4.3) one has

log |x (X)) logg 1 2d-1 1 e
b(X)) +db(xj)—b(xj) SZEJ(—U log|P,(X;,q )| =

2d— by(X;)
— Z )s+1 Z log(l q(s 2d)/2a )_
] s=0 k=1
2d— by (X)) « q(s 2)1/2 z
— 1)S+1 Z Z —
5=0 =1 I=1
1 Sq (& e
= (X]) IZ T(Z( 1)5q5 /2 kZ aS’i_q )+
2d—1 by(X)) q(s zd)l/zaz
Z( DY Y =
b(X) k=1 l=c+1
N, (X) q®
—Z l q " +R.(X)).

An obvious estimate gives

2d
Zb(Xj) 00 q—l/z

IR.(X)| < = b(X) l=§1 ——0

for ¢ — oo uniformly in j. O
Now let us note that

1 41 2
< =

when logc/b(X i)—0. Thus to prove the main theorem we are left to deal
with the following sum:

1 zc: q 1 zc: q—dl zc: ch?Jq —mkd
—N;(X;) = — m@ ¢>
(X}-) = [ J b(X}-) = [ o b(X) = k
B 1 c qmd © q—mkd
- b)) mz=:1 Pqlog qm-1 b(X) mzl %o Lc/%:+1 k
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Let us estimate the last term:

o0 —mkd

q
Z¢m Z Ts

m=1 k=[c/m]+1
C 1S Na@pgmmy & NG (XDg
S b)) 2 m(le/m]+DA—-g ™) T b)) L c(l—g ) T
i( d Zdzl /2 —dc
q"+1+4 2, byg™ )—_m S
X)) = s c(l—g™md) =

s=1

b(X)

2d—1 —dc
q44+1+ Z bsq“/z)— -0

\b(X)( (1-qg™

as both b(Xj) — o0 and ¢ — .

Now, to finish the proof we will need an analogue of the basic in-
equality from [31]. In the higher dimensional case there are several ver-
sions of it. However, here the simplest one will suffice. Let us define for
i=0...2d the following invariants:

(X)) = limsup .
B;({X;H = 1mjsup b(x) "

Theorem 4.2. For an asymptotically exact family {X;} we have the

inequality:
had m¢qm _ ﬁ ﬁ

> T < @ 1)/2—1)( > et _—)
m1 g2 —1 izimod 2 44T isgmea 2 4421

Proof. See [18, Remark 8.8]. O

Applying this theorem together with the fact that

md
q . 1 _ m
IOg qmd -1 - O(qdm _ 1) - O(q(Zd—l)m/Z _ 1)

when m — o, we conclude that the series on the right hand side of (3.1)
converges. Thus the difference

md 1 c md

q q
Z Pgnlog —— -1 b(X) mZ::1¢q”1108 md _1

md md

q
Z(%"l_b(m)log - Y pplog i T~ 0

m=c+1
when ¢ — o, j — 0 and j is large enough compared to c¢. This concludes
the proof of Theorem 3.2.

Acknowledgements. I would like to thank my advisor Michael Ts-
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Brauer—Siegel theorem for families
of elliptic surfaces over finite fields

The classical Brauer—Siegel theorem for number fields proved by
Brauer (see [1]) claims that, if k ranges over a sequence of number
ny log(hRy) .

log D] log /D, |

Here Dy, hy, and R, stand for the discriminant, the class number, and
the regulator of the field k, respectively. This theorem was generalized
by M.A. Tsfasman and S.G.Vladut (see [2]) to the case in which the
condition n;/log|D;| — 0 fails to hold (asymptotically good families of
fields). Here the limit thus obtained, limlog(h;R;)/log +/|Dy|, need not
be equal to 1.

The existence of a deep analogy between number fields and function
fields has been well known for a long time. Here many results for func-
tion fields can be obtained in a much simpler way (for instance, analytic
problems related to zeta functions disappear). The analog of the Brauer—
Siegel theorem for function fields is proved in an essentially simpler way,
and the normality condition (which is present in the case of number
fields) turns out to be excessive.

Let {X;} be a family of pairwise nonisomorphic smooth absolutely
irreducible projective curves over a finite field F, of genus g; =g(X;). Let
94 (X;) be the number of points whose degree is exactly equal to m on
the curve X;.

Definition 1. The numbers

fields normal over £ and such that — 0, then

i—o &
are said to be the Tsfasman—Viddut invariants of the family {X;}. If the

limits ¢, exist, then the family is said to be asymptotically exact.
Let

Z,(t) = l_[ (1- tm)_ém(Xi)
m=1
be the zeta function of the curve X;. It has a pole of order one at the
point t =1/q, and we denote the residue of the function at the point by

A.1. Zykin, Brauer—Siegel theorem for families of elliptic surfaces over finite fields, Math-
ematical Notes, 86 (2009), no. 1, 140—142.
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K;. As is well known, k; can be expressed in terms of the I -points of
the Jacobian of the curve X; (an analog of the ideal class numbers in the
number field case). The following theorem holds, which was proved by
Tsfasman in [3].
Theorem 1. The formula
. logk; S q"
fim = = 1+,§1¢qmlogq’"—1
holds for any asymptotically exact family of curves X;.
Attempts to generalize this theorem to the multidimensional case
immediately lead to several results. First, for a family of algebraic vari-
eties of dimension d over a finite field F;, one can study the behavior

of the residue of the zeta function at the point t = ¢~ ¢. An analog of
Theorem 1 in this direction was obtained in [4]. However, the geometric
interpretation of the residue of the zeta function at the point t =q ¢ is
less simple here.

Another approach was suggested by Hindry in [5] and by Kunyavskii
and Tsfasman in [6]. In these papers, the behavior of the value of the
L-function at the point s =1 is studied for families of elliptic curves. The
problem is of interest, because this value is related to subtle arithmetic
invariants of elliptic curves by the Birch—Swinnerton-Dyer conjecture.
Hindry formulates a conjecture (similar to the Brauer—Siegel theorem)
in the case of a family of elliptic curves over a chosen number field. In
this note, we are mainly interested in the function case, and therefore we
consider the Kunyavskii—Tsfasman approach in more detail.

Let us present several preliminary definitions. Let X be a smooth
projective curve over g, let K =T (X) be the function field of X, let
E/K be an elliptic curve, and let f: E— X be the corresponding elliptic
surface. Consider the family of coverings

X:XO(_XI(_...(_Xi(_...

and the family of elliptic surfaces &; obtained by the base change,

g:go g]. gi
Ny l
X:XO Xl Xi

Let &, ((X;) be the number of points of degree f on X; lying above
the point v €|X|. Assume below that the limits ¢, =1im(®, ;(X;)/g:)
{—o
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exist for the family {X;}. Denote by E; the elliptic curve which is the
common fiber of the mappings E; — X;. If v is a closed point of X, then
we set N, =q9°8V. Let N, ¢(E) be the number of points on the reduction

E,=f~1(v) of the curve E over the field Fy,s. Write a, s (E) =Nvf+1-
—N, ¢(E) and

E.5) 1-a, fNU_fS +Nv/3=2)~1 if E is nonsingular;
E,s ’

v.f a- a,,,fNu_fS)_1 otherwise.

Recall that the L-function of an elliptic curve E is defined as

L) = [] L,y (B, ).

veElX]|

We also introduce the limit L-function of the family {E;/K;} by

Ligjiy() = T1 [1L,f(E, )%
velX| f=1
Let r; be the order of zero of L;(s) at the point s =1, and let ¢; be the
first nonzero coefficient in the expansion of L(s) in the Taylor series at
s =1. Kunyavskii and Tsfasman [6] formulate the following conjecture.
|CE1 v f(E)

= Z Z¢vflog I\’Ivf

velX| f=1

A special case of thlS conjecture in the case of constant elliptic curves
(6 =E’' x X;, where E’/ Fyisa chosen elliptic curve) is also proved in [6].
Unfortunately, the proof contains gaps. The transposition of the passage
to the limit in the infinite product for the L-function and the passage to
the limit as g; — o is not justified. Thus, at present, the conjecture is
verified for no family of elliptic curves.

Our main result is the proof of the following fact towards the con-
jecture.

Theorem 2. 1) The infinite product for L(g k., (s) converges for Res=>1.

2) The following formula holds for Res > 1:

logLEl, (s)
m—

Conjecture. lim
11—

= logL{Ei/Ki}(s).

i—o i
3) Suppose that the family E;/K; satisfies the condition lim r /g;=0
[—o00
Then
log |CE |

i— o i

< logLg jxy (1).
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Remarks. 1) The condition limrg /g; =0 holds for every constant
[—o0

family of curves and holds rather often in the general case (see [7]).

2) The problem concerning the equality case in assertion 3) of the

theorem is quite subtle and is related to low-placed zeros of the L-func-
tions. For a detailed discussion of the problem (although in a somewhat
different situation), see [8].

Acknowledgments. The author wishes to express gratitude to his re-

search supervisor M. A. Tsfasman for fruitful discussions and permanent
attention to his research and also to M. Balasard for fruitful ideas.

1.

6.

Bibliography

R. Brauer, On the zeta-functions of algebraic number fields, Amer. J. Math. 69
(1947), no. 2, 243—250.

. M.A.Tsfasman and S.G.Vladut, Infinite global fields and the generalized

Brauer—Siegel theorem, Mosc. Math. J. 2 (2002), no. 2, 329—402.

. M. A. Tsfasman, Coding Theory and Algebraic Geometry, Luminy, 1991, Lec-

ture Notes in Math, vol. 1518, Springer-Verlag, Berlin, 1992, 178—192.

. A.Zykin, Proceedings of the Conference AGCT 11, Luminy, 2007 (CIRM, Lu-

miny), in press.

. M. Hindry, Diophantine Geometry, CRM Series (Ed. Norm., Pisa, 2007), vol. 4,

197—219.

B. E. Kunyavskii and M. A. Tsfasman, Brauer—Siegel theorem for elliptic sur-
faces, Int. Math. Res. Not. IMRN, no. 8 (2008).

. A.Brumer, The average rank of elliptic curves, I, Invent. Math. 109 (1992),

no. 3, 445—472.

. H.Iwaniec, W. Luo, and P. Sarnak, Low lying zeros of families of L-functions,

Inst. Hautes Etudes Sci. Publ. Math. 91 (2000), 55—131.

A. 1. ZyxiNn — Steklov Mathematical Institute, Russian Academy of Sci-

ences, Independent University of Moscow.



Asymptotic properties of the Dedekind zeta
function in families of number fields

Our starting point is the classical Brauer—Siegel theorem for num-
ber fields proved by Brauer in [1]. It states that if K runs through a se-
quence of number fields normal over Q such that n, /log|Dx|— 0, then
log(hyRy)/log +/|Dg| — 1. Here D, h,, and Ry are respectively the dis-
criminant, the class number, and the regulator of the field K.

In [2] this theorem was generalized by Tsfasman and Vladuts to the
case when the condition n; /log|Dy|— 0 no longer holds. To formulate
this result we will need some notation. For a finite extension K/Q de-
note by ¢,(K) the number of prime ideals of the ring of integers O
having their norm equal to q. Denote by &5 (K) and ¢(K) the num-
ber of real and complex embeddings of K into C, respectively. Also let
g =log 1/|Dg/| be the genus of the field K (by analogy with the function
field case). An extension K/Q is said to be almost normal if there exists
a tower of intermediate extensions K=K, 2K, ;2---2K; 2K, =Q
such that K;/K;_; is normal for all i.

Consider a family {K;} of pairwise non-isomorphic number fields.
We define ¢, = lhglo P, (Kl-)/gKi, aei{R,C,2,3,4,5,7,9,...}. If the lim-

its ¢, exist, then the family is said to be asymptotically exact. It is said
to be asymptotically good if there exists ¢, 7# 0, and asymptotically bad
otherwise.

It is easy to check that the condition n, /log|Dx|— 0 in the Brauer—
Siegel theorem is equivalent to the condition that the corresponding fam-
ily be asymptotically bad. We can now formulate the theorem proved by
Tsfasman and Vladuts in [2] in the asymptotically good case and by the
author in [3] in the asymptotically bad case.

Theorem 1. For an asymptotically exact family {K;},

log(hy Ry.)
m——— = 1+Z¢q108qu1—¢R1082_¢<Cl°g(2”) m
q

{— K;
provided that all the K; are almost normal over QQ or the Generalized
Riemann Hypothesis (GRH) holds for the Dedekind zeta functions of the
fields K;.

A.1 Zykin, Asymptotic properties of the Dedekind zeta function in families of number
fields, Russian Mathematical Surveys, 64 (2009), no. 6, 1145—1147.
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Let us define the limit zeta function of an asymptotically exact family
of number fields as

Sy =11 - q=%) "%,
q

Theorem C in [2] implies the absolute convergence of the infinite product
for Res = 1. If x; = Res,_; {x(s) is the residue of the Dedekind zeta
function of the field K at the point s =1, then the equality (1) can be
restated as }Lrp” log Xy / &, =log {x,;(1). Moreover, it was proved in [2]

that lim log . (s)/g, =10g{ k., (s) for Res>1.

Our main goal is to investigate whether an analogous equality is
true for Res < 1. The case s =1 is essentially equivalent to the Brauer—
Siegel theorem, and we are at present unable to treat this question in
full generality without assuming the GRH. From now on, we assume
that the GRH holds for the Dedekind zeta functions of the fields under
consideration.

Assuming the GRH, one can prove ([2], the corollary to Theorem A)
that the infinite product for { x , (s) is absolutely convergent for Res > 1/2.
We now formulate our main results.

Theorem 2. Under the assumption of the GRH the equality

}me log (k. (s)/gKl_ = log {x,3(s)

holds for Res>1/2 for an asymptotically exact family {K;}.

The proof of the theorem uses estimates of the logarithmic deriva-
tives of zeta functions in the critical strip together with Vitali’s theorem
on limits of holomorphic functions.

Our result is weaker for s = 1/2. We get the following upper estimate:

Theorem 3. Let Py, be the first non-zero coefficient in the Taylor se-

. . 1 .
ries expansion of (i (s) at s= 7 that is,

1\k 1\k
b= i) +ol(s-1)").
Then under the assumption of the GRH,
limloglo, |/gx, < logCk,(1/2)

for an asymptotically exact family {K;}.
To prove Theorem 3 we employ methods similar to those in the proof
of the upper estimate in the equality of Theorem 1 as well as information
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about the limiting distribution of the zeros of zeta functions on the crit-
ical line in families of number fields.

The question of whether equality holds in the statement of Theo-
rem 3 is rather delicate. It is related to the so-called low-lying zeroes of
zeta functions, that is, zeroes of { (s) having small imaginary parts com-
pared to g,.. We think that the equality lhér?0 log IpKi I/gKi =log {(x,;(1/2)

need not be true for all families {K;}, since the behaviour of low-lying
zeros of zeta functions is rather random. It might, however, be true for
‘most’ families. A more thorough discussion, though in a slightly different
situation (low-lying zeroes of L-functions associated with modular forms
on SL,(R)), can be found in [4].

We formulate a corollary to Theorem 2. Recall that the Euler—Kro-
necker constant of a number field K is defined as y, =c,(K)/c_;(K),
where {(s) =c_;(K)(s — 1)1+ ¢y (K) + O(s — 1). In [5] Thara obtained
an asymptotic formula for y in families of curves over finite fields. We
have the following result, which is derived from Theorem 2.

Corollary 4. Under the assumption of the GRH,

limyg /g, =—>,¢,logq/(g—1)
i—o i q

for an asymptotically exact family {K;} of number fields.

This was stated in [6] without assuming the GRH. Unfortunately,
the proof there is flawed. It uses an unjustified interchange of limits in
the sum over prime powers and the limit over the family {K;}. Thus, the
question of whether such an equality holds without assuming the GRH
remains open.

I would like to thank my advisor M. A. Tsfasman for many fruitful
discussions and constant attention to my work. I would also like to thank
M. Balazard for sharing his valuable ideas with me and for his advice.
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Asymptotic properties of Dedekind zeta
functions in families of number fields

Résumé. Le but de cet article est de démontrer une formule qui ex-
prime la conduite asymptotique de la fonction zéta de Dedekind dans des
familles de corps globaux pour Re s > 1/2 en supposant que ’'Hypothese
de Riemann Généralisée est vérifiée. On peut voir ce résultat comme
une généralization du théoreme de Brauer-Siegel. Comme corollaire,
on obtient une formule limite pour des constants d’Euler—Kronecker
dans des familles de corps globaux.

Abstract. The main goal of this paper is to prove a formula that
expresses the limit behaviour of Dedekind zeta functions for Res>1/2
in families of number fields, assuming that the Generalized Riemann
Hypothesis holds. This result can be viewed as a generalization of the
Brauer—Siegel theorem. As an application we obtain a limit formula for
Euler—Kronecker constants in families of number fields.

1. Introduction

Our starting point is the classical Brauer—Siegel theorem for num-
ber fields first proven by Siegel in the case of quadratic fields and then
by Brauer (see [1]) in a more general situation. This theorem states that
if K runs through a sequence of number fields normal over Q such that
ng/log|Dg| — 0, then log(hgRk)/log +/|Dx|— 1. Here Dy, hg, Ry and
ng are respectively the discriminant, the class number, the regulator and
the degree of the field K.

In [11] this theorem was generalized by Tsfasman and Vladut to the
case when the condition ny/log|Dx| — 0 no longer holds. To formulate
this result we will need to introduce some notation.

For a finite extension K /Q, let $,(K) be the number of prime ideals
of the ring of integers Oy with norm g, i.e. &;(K) = |[{p [ Normp =q}|.
Furthermore, denote by & (K) and & (K) the number of real and com-
plex places of K respectively. Let gx =1log 4/ |Dx| be the genus of the field
K (in analogy with the function field case). An extension K/Q is called

Alexey Zykin, Asymptotic properties of Dedekind zeta functions in families of number
fields, Journal de Théorie des Nombres de Bordeaux, 22 (2010), no. 3, 771—778.
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almost normal if there exists a tower of extensions K =K, 2 K,,_;...
...2K; DK, =Q such that K;/K;_; is normal for all i.

Consider a family of pairwise non-isomorphic number fields {K;}.

Definition 1. If the limits

b, = lhnolo &KK{), ae{R,C,23,4,579,...}

exist for each a then the family {K;} is called asymptotically exact. It is
asymptotically good if there exists ¢, # 0 and asymptotically bad other-
wise. The numbers ¢, are called the Tsfasman—VI1adut invariants of the
family {K;}.

It is not difficult to check (see [11, Lemma 2.7]) that the condition
ng/log|Dg| — 0 from the Brauer—Siegel theorem is equivalent to the
fact that the corresponding family is asymptotically bad. One can prove
that any family contains an asymptotically exact subfamily and that an
infinite tower of number fields is always asymptotically exact (see [11,
Lemma 2.2 and Lemma 2.4]).

Now we can formulate the Tsfasman—Vladut theorem proven in [11,
Theorem 7.3] in the asymptotically good case and in [12, Theorem 1] in
the asymptotically bad one.

Theorem 1. For an asymptotically exact family {K;} we have

log(hg, Ry.)
m — e
gk,

i—o

1 = 1+§qbqlog(J%1 — ¢rlog2 — ¢ log2m, 1.1
provided either all K; are almost normal over Q or the Generalized Rie-
mann Hypothesis (GRH) holds for zeta functions of the fields K;.

To generalize this theorem still further we will have to use the con-
cept of limit zeta functions from [11].

Definition 2. The limit zeta function of an asymptotically exact fam-
ily of number fields {K;} is defined as

C{Ki}(s) = l_[(l - q_s)_¢q-
q
Theorem C from [11] gives us the convergence of the above infinite
product for Res > 1. Let x; =Res,_; {x (s) be the residue of the Dedekind
zeta function of the field K at s = 1. Using the residue formula (see [7,
Chapter VIII, Theorem 5])

2%r(K) (zn)¢c(K)hKRK

Xg =
w4/ | Dl
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(here wy is the number of roots of unity in K) and the estimate wy = O(nlz()
(see [7, p.322]) one can see that the question about the behaviour of
the ratio from the Brauer—Siegel theorem is immediately reduced to the
corresponding question for xy.
log .
The formula (1.1) can be rewritten as lim g—K =log {(x,(1). Fur-
K; !

1—®© f

thermore, Tsfasman and Vladut prove in [11, Proposition 4.2] that for

M =log C{Ki}(s) holds.

Our main goal is to invelstigate the question of the validity of the
above equality for Res < 1. We work in the number field case, for the
function field case see [13], where the same problem was treated in a
much broader context.

The case s =1 is in a sense equivalent to the Brauer—Siegel theorem
so current techniques does not allow to treat it in full generality without
the assumption of GRH. From now on we will assume that GRH holds
for Dedekind zeta functions of the fields under consideration. Assuming
GRH, Tsfasman and Vladut proved ([11, Corollary from Theorem A]) that

the infinite product for {, (s) is absolutely convergent for Res > % We
can now formulate our main results.
Theorem 2. Assuming GRH, for an asymptotically exact family of

number fields {K;} for Res > % we have
. log((s = 1)k, (5))
lim ——————

i—

Res > 1 the equality lim
[— 00

= IOg Z:{Ki} (s).

i

The convergence is uniform on compact subsets of the half-plane {s |Res >
-1,
2
The result for s = = is considerably weaker and we can only prove
the following upper bound:
Theorem 3. Let py, be the first non-zero coefficient in the Taylor se-

ries expansion of (i (s) at s= %, ie.

60 =py(s=3)" +ol(s-3)")

Then, assuming GRH, for any asymptotically exact family of number fields
{K;} the following inequality holds:

log|py |

lim sup

i—© i

< log C{K,»}(%)- 12)
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The question whether the equality holds in Theorem 3 is rather deli-
cate. It is related to the so called low-lying zeroes of zeta functions, that
is the zeroes of {x(s) having small imaginary part compared to gx. We

|P1< |

=log {x, }( ) holds for any asymptot-

ically exact family {K;} since the behawour of low-lying zeroes is known to
be rather random. Nevertheless, it might hold for “most” families (what-
ever it might mean). A more thorough discussion of this question in a
slightly different situation (low-lying zeroes of L-functions of modular
forms on SL,(R)) can be found in [4].

To illustrate how hard the problem may be, let us remark that Iwaniec
and Sarnak studied a similar question for the central values of L-functions
of Dirichlet characters [5] and modular forms [6]. They manage to prove
that there exists a positive proportion of Dirichlet characters (modular
forms) for which the logarithms of the central values of the correspond-
ing L-functions divided by the logarithms of the analytic conductors tend
to zero. The techniques of the evaluation of mollified moments used
in these papers are rather involved. We also note that, to our knowl-
edge, there has been no investigation of low-lying zeroes of L-functions
of growing degree. It seems that the analogous problem in the function
field has neither been very well studied.

Let us formulate a corollary of the Theorem 2. We will need the
following definition:

Definition 4. The Euler—Kronecker constant of a number field K is
defined as yx = LGN

C_Ol((1<)) ,where {g(s)=c_1(K)(s—1) " +co(K)+0(s—1).

Thara made an extensive study of the Euler—Kronecker constant in
[2]. In particular, he obtained an asymptotic formula for the behaviour of
y in families of curves over finite fields. As a corollary of Theorem 2, we
prove the following analogue of Thara’s result in the number field case:

Corollary 1. Assuming GRH, for any asymptotically exact family of
number fields {K;} we have

lim 2% = — Z qbq

i—o 8k;

doubt that the equality _lim

q-

This result was formulated in [10] without the assumption of the
Riemann hypothesis. Unfortunately, the proof given there is flawed. It
uses an unjustified change of limits in the summation over prime powers
and the limit taken over the family {K;}. Thus, the question about the
validity of this equality without the assumption of GRH is still open.
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It would be interesting to have a result of this type at least under a
certain normality condition on our family {K;}. Even the study of abelian
extensions is not uninteresting in this setting.

2. Proofs of the main results

Proof of Theorem 2. The statement of the theorem is known for
Res > 1 (see [11, Proposition 4.2]) thus we can freely assume that Re s <2.

We will use the following well known result [3, Proposition 5.7]
which can be proven using Hadamard’s factorization theorem.

Proposition 1. (1) For —% <0<2, s=0+it we have
&) 1

1 1
Cx(s) + S + s—1 \S—%l:<1 s—p 0(gx)»

where p runs through all non-trivial zeroes of { (s) and the constant in O
is absolute.

(2) The number m(T, K) of zeroes p = f3 + yi of {x(s) such that
ly — T| <1 satisfies m(T, K) < C(gg + ng log(|T| +4)) with an absolute
constant C.

Now, applying this proposition, we see that for fixed T > 0, € > 0 and

anyse@”:{seﬁcl|Ims|$T,e+%$Res<2} we have
0 () 1 1

(K(S) + s—1 = \s—%l:<g s—p +OT,s(gK)’ (2.1)

for by Minkowski’s theorem [7, Chapter V, Theorem 4] ny < Cgx with an
absolute constant C.

If we assume GRH, the sum over zeroes on the right hand side of
(2.1) disappears. Integrating, we finally get that in 2,

log({x(s)(s — 1))
8k

Now, we can use the so called Vitali theorem [9, 5.21]:

Proposition 2. Let f,(s) be a sequence of functions holomorphic in a
domain 9. Assume that for some M € R we have |f,(s)| <M for any n and
s€ 9. Let also f,(s) tend to a limit at a set of points having a limit point in
9. Then the sequence f,(s) tends to a holomorphic function in 2 uniformly
on any closed disk contained in 2.

It suffices to notice that the convergence of log ¢ k. (s) / gk, to 4 w3 (8)
is known for Res > 1 by [11, Proposition 4.2]. So, applying the above

= OT,S (1)
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theorem and using the fact that under GRH {x,(s) is holomorphic for

Res> 1 [11, corollary from Theorem A] we get the required result. O
Proof of Theorem 3. Denote g =g, . Let us write

Tk () = ck(s - %)rka(S),

where F, (s) is an analytic function in the neighbourhood of s = % such

that Fk(%) =1.Letus puts= % + 0, where 0 >0 is a small positive real
number. We have
IOgCKk(%-FQ) _logey log 6 long(%—f—G)
8k & i 8k + 8k '
To prove the theorem we will construct a sequence 6, such that

1 1 1
M glOggKk(E+9k)_)10g§{Kk}(§)§
2) T log 6, — 0;

8k

o1 1
(3) liminf 2 10ng(§ + Gk) =0.

For each natural number N we choose 0 (N) a decreasing sequence

such that
1 1

1
‘C{Kk}(i)—@m(i +9(N))' <3N
This is possible since {x,;(s) is continuous for Res = % by [11, corollary
from Theorem A]. Next, we choose a sequence k’(N) with the property:
1 1 1 1
‘g log Ly, (3+6) ~log ¢y (5 + 9)‘ <o

for any 6 € [0 (N +1), (N)] and any k = k’(N). This is possible by The-
orem 2. Then we choose k”(N) such that

—rlog6(N+1) _ O(N)
8k = N

for any k > k”’(N), which can be done thanks to the following proposition
(c.f. [3, Proposition 5.34]):

Proposition 3. Assume that GRH holds for { (s). Then
Clog3|Dg|

ordy(s) < m————0o
s=1 Sk (s) loglog 3|Dg|

the constant C being absolute.
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Finally, we choose an increasing sequence k(N) such that k(N) =
>max(k’(N), k”(N)) for any N.

Now, if we define N = N (k) by the inequality k(N) <k <k(N+1)
and let 6, = 0 (N (k)), then from the conditions imposed on 6, we automat-
ically get (1) and (2). The delicate point is (3). We will use Hadamard’s
product formula [8, p.137]:

log|Dg| = & (K)(logm —)(s/2)) +
C’ (s)
P C (s)’

+26(K) (log(27m) — 4 () — 2 — - +2Z -

where 1 (s) =T7(s)/T'(s) is the logarithmic derivative of the gamma
function. In the first sum p runs over the zeroes of {(s) in the critical
strip and Z/ means that p and p are to be grouped together. This can
be rewritten as

86 (3+0)-nogo) = -1+ 552 g4 3+ )

c(Ky) __ 80 (S
+ 222 (log 27 - (3 + ))+(1—492)gk+p§/2 a/2+6-pg’

. . 1
(the term r,. log & comes from the contribution of zeroes at s = 5). One
notices that all the terms on the right hand side except for —1 and

86 /
A—a00g, are positive. Thus, we see that (long( + 9)) = C for
- Kk

any small enough 6, where C is an absolute constant. From this and
from the fact that Fk(%) =1 we deduce that

1 1

This proves (3) as well as the theorem. O
Proof of the Corollary 1. It suffices to take the values at s=1 of
the derivatives of both sides of the equality in Theorem 2. This is possible

. . . 1
since the convergence is uniform for Res > 3 O
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Jacobians among abelian threefolds:
a formula of Klein and a question of Serre

(with G.Lachaud and C. Ritzenthaler)

Abstract. In this paper we give a criterion when an indecompos-
able principally polarized abelian threefold (A, a) defined over a field
k c C is a Jacobian over k. More precisely, (A, a) is a Jacobian over
k if and only if the value of a certain geometric Siegel modular form
x15(A, @) is a square over k. This answers a question of J.-P. Serre.

1. Introduction

Let k be an algebraically closed field and let g = 1 be an integer.
If X is a (nonsingular, irreducible, projective) curve of genus g over k,
Torelli’s theorem states that the map X — (JacX, j), associating to X
its Jacobian together with the canonical polarization j, is injective. The
determination of the image of this map is a long time studied question.

When g =3, the moduli space A, of principally polarized abelian
varieties of dimension g and the moduli space M, of nonsingular alge-
braic curves of genus g are both of dimension g(g+1)/2=3g—3=6.
According to Hoyt [4] and Oort and Ueno [10], the image of M is exactly
the space of indecomposable principally polarized abelian threefolds.
Moreover, if k = C Igusa [5] characterized the locus of decomposable
abelian threefolds and that of hyperelliptic Jacobians, making use of two
particular modular forms X;4, and y;g on the Siegel upper half space of
degree 3. A similar characterization also exists in case g=2 (c.f. [9]).

Assume now that k is any field and g > 1. J.-P. Serre noticed in [8]
that a precise form of Torelli’s theorem reveals a mysterious obstruction
for a geometric Jacobian to be a Jacobian over k. More precisely, he
proved the following:

Theorem 1. Let (A, a) be a principally polarized abelian variety of
dimension g =1 over k, and assume that (A, a) is isomorphic over k to the

G. Lachaud, C. Ritzenthaler, A. L. Zykin, Jacobians among abelian threefolds: a formula
of Klein and a question of Serre, Doklady Mathematics, 81 (2010), no. 2, 233—235.
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Jacobian of a curve X, of genus g defined over k. The following alternative
holds:

1) If X, is hyperelliptic, there is a curve X /k isomorphic to X, over k
such that (A, a) is k-isomorphic to (JacX, j).

2) If X, is not hyperelliptic, there is a curve X /k isomorphic to X,
over k, and a quadratic character

g: Gal(k®P/k) — {£1}

such that the twisted abelian variety (A, a), is k-isomorphic to (JacX, j).
The character ¢ is trivial if and only if (A, a) is k-isomorphic to a Jacobian.

Thus, only case 1) occurs if g=1 or g =2, with all curves being
elliptic or hyperelliptic. In this article we completely resolve for fields of
characteristic zero the first previously unknown case g=3.

Let there be given an indecomposable principally polarized abelian
threefold (A, a) defined over k. In a letter to J. Top [11], J.-P. Serre asked
a twofold question:

* How to decide, knowing only (A, a), that X is hyperelliptic?
* If X is not hyperelliptic, how to compute the quadratic character €?

Assume that k € C. The first question can easily be answered using
the modular forms X4, and y;5. As for the second question, roughly
speaking, Serre suggested that ¢ is trivial if and only if y,g is a square
in k* (see Theorem 2 for a more precise formulation). This assertion was
motivated by a formula of Klein [6] relating the modular form y,g (in the
notation of Igusa) to squares of discriminants of plane quartics, which
more or less gives the ‘only if’ part of the claim. In [7], two of the au-
thors justified Serre’s assertion for a particular three dimensional family
of abelian varieties and in particular determined the absolute constant
involved in Klein’s formula.

In this article we justify Serre’s assertion for any abelian threefold,
thus giving an algorithm which allows to determine whether a given
principally polarized abelian threefold over k is a Jacobian over k. In
order to do so, we start by taking a broader point of view, valid for
any g>1.

1) We look at the action of k-isomorphisms on Siegel modular forms
defined over k and we define invariants of k-isomorphism classes of
abelian varieties over k.

2) We link Siegel modular forms, Teichmiiller modular forms and
invariants of plane curves.
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Once these two goals are achieved, Serre’s assertion can be rephrased
as the following strategy:

* use 2) to prove that a certain Siegel modular form f is a suitable n-th
power with n > 1 on the Jacobian locus;

e use 1) to distinguish between Jacobians and their twists. Indeed, the
action of a twist on f may change its value by a non n-th power and
then, according to 2) of Theorem 1, we have a criterion to distinguish
Jacobians.

For g =3, Klein’s formula shows that the form y,g is a square on
the Jacobian locus and that this is enough to characterize this locus. The
relevance of Klein’s formula in this problem was one of Serre’s insights.
We would like to point out that we do not actually need the full strength
of Klein’s formula to work out our strategy. One can use instead a for-
mula due to Ichikawa relating y,5 to the square of a Teichmiiller mod-
ular form, denoted u; 5. However we think that the connection between
Siegel modular forms and invariants is interesting enough on its own,
besides the fact that it gives a new rigorous proof of Klein’s formula.

2. Main theorems

Let H, = {T EM,(O) | ‘=7, IIIlT>O} be the Siegel upper half
space of genus g.
We recall the definition of theta functions with (entire) characteristics

&

[e] = { } e 78®78,
&

following [1]. The (classical) theta function is given, for T € H, and

z€C8, by

0 € (Z, T) _ Z 62ni((n+51/2)r(n+51/2)+2(n+81/2)(z+82/2)).
€2 nezs

The Thetanullwerte are the values at z =0 of these functions, and we
write
1

O[el(T) = 9[ }(7) = 9[ }(0, 7).

& €

& &

Recall that a characteristic is even if ¢; - £, =0 (mod 2) and odd other-

wise. Let S, be the set of even characteristics with coefficients in {0, 1}.
For g > 2, we put h=|S,|/2=2¢"2(28 +1) and
in(t) =1 0Lel(n).

€€S,
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Denote by 3,4, the modular form defined by the thirty-fifth elemen-
tary symmetric function of the eighth powers of the even Thetanullwerte.

Recall that a principally polarized abelian variety (A, a) is decom-
posable if it is a product of principally polarized abelian varieties of lower
dimensions, and it is indecomposable otherwise.

Let k C C be a field and let g= 3. Consider a principally polarized
abelian threefold (A, a) defined over k. Let w;, w,, w5 be any basis of
the space of differential forms Q}[A]=H°(A, ;) and lety,, ...,y be a
symplectic basis (for the polarization a) of H; (A, Z), in such a way that

for = [o
1

Y6

j‘w:‘; e J‘w:‘;
1

i3

is a period matrix of (A, a). Put T = Qz_lﬂl € Hs.

We have the following theorem which allows us to determine whether
a given abelian threefold defined over k is k-isomorphic to a Jacobian of
a curve defined over the same field. This settles the question of Serre
recalled in the introduction.

Theorem 2. 1) If 5140(7) =0 and ¥,5(7) =0 then (A, a) is decom-
posable over k. In particular it is not a Jacobian.

2) If §14o (1) #0 and y,5(7t) =0 then there exists a hyperelliptic curve
X /k such that (JacX, j) ~ (A, a).

3) If 715(7) #0 then (A, a) is isomorphic to a Jacobian if and only if

Z15(T)

—x18(A, 0 Awy Aws) = (27T)54W

is a square in k.
Corollary 3. In the notation of Theorem 2, the quadratic character &
of Gal(k*°?/k) introduced in Theorem 1 is given by €(c) =d/d?, where

_ s4_X18(7)
d= \J @™ Gty

with an arbitrary choice of the square root.

Our proof of the theorem is based on the so called Klein’s formula
which has an interest in itself. To formulate this result we have to intro-
duce yet another notation.
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Let F be a homogeneous polynomial of degree 4 in 3 variables xy,
Xy, x3 with coefficients from the field k and let Cy be the corresponding
quartic in P2. It is well known [3, Chapter 9, Example 1.6(a)] that up
to a sign there exists a unique polynomial DiscF in coefficients of F,
irreducible over Z, such that Disc F =0 if and only if Cy is singular.

Assume that Cy is non-singular. We recall the classical way to write
down an explicit k-basis of Q[Cr]=H°(Cy, Q) (see [2, p.630]). Let

f(xydxs —x5dxs) f(xsdxy —x;dxs) f (e dxy, — x,dx;)

M=% /ax, > M7 4Fjox, > T aFjox,
where f is a linear polynomial in x;, x5, X3. The forms 7); glue together
and define a regular differential form 7 f(F) e Ql[CF]. Now, denote by
11, N2, N3 the sequence of sections obtained by substituting x;, x5, x5 for
finng.

Let y4, ..., Yo be a symplectic basis of H;(C, Z) for the intersection

pairing. Let
jm J<771
r1 Y6
Q=[0, Wl=| :

J"’?s _Yns
71

Y6

be a period matrix of Jac(C) and let T =0, 'Q,; € H.
Our second main result is the following one:
Theorem 4 (Klein’s formula). In the above notation we have

X15(7)

. 2 _ 1 S L8
Disc(F)“ = 528 (2m) det(Q,)18"
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Jacobians among Abelian threefolds:
a formula of Klein and a question of Serre

(with G.Lachaud and C. Ritzenthaler)

Abstract. Let (A, a) be an indecomposable principally polarized
abelian threefold defined over a field k C C. Using a certain geometric
Siegel modular form y,4 on the corresponding moduli space, we prove
that (A, a) is a Jacobian over k if and only if y,3(A, a) is a square over k.
This answers a question of J.-P. Serre. Then, via a natural isomorphism
between invariants of ternary quartics and Teichmdiiller modular forms
of genus 3, we obtain a simple proof of Klein formula, which asserts
that y,5(JacC, j) is equal to the square of the discriminant of C.

Introduction

Let A; be the moduli stack of principally polarized abelian schemes
(A, a) of relative dimension 3 and Mj be the moduli stack of smooth
and proper curves of genus 3. The first aim of this article is to an-
swer the following question of Serre [20]: If k is a subfield of C, and
if (A, a) € A; ® k, under what conditions is it isomorphic over k to a
polarized Jacobian? If k = k, this is the case if and only if (A, a) is
indecomposable, according to Hoyt [9] and Oort and Ueno [18]. We
henceforth assume (A, a) indecomposable, and isomorphic over k to the
principally polarized Jacobian (JacC, j) of a curve C/k of genus 3. For
a general field k C C, the answer is given by a particular Siegel modular
form y,g of genus 3. This form is actually defined up to a multiplicative
constant by the product of the 36 Thetanullwerte with even charac-
teristics. Our main result (Th. 1.3.3) is the following criterion: (A, a)
is isomorphic over k to (JacC, j) if and only if y,5(A, a) is a square
over k. This was suggested by Serre in [20] and proved in [15] by the first
two authors for a 3-dimensional family of abelian varieties. This square
appears due to the following fact: by taking the inverse image under the

Gilles Lachaud, Christophe Ritzenthaler, Alexey Zykin, Jacobians among abelian three-
folds: a formula of Klein and a question of Serre, Matematical Research Letters, 17 (2010),
no. 2, 323—333.
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Torelli morphism ¢t: C — (JacC, j) (with j the canonical polarization),
we get an element t*y,4 in the algebra of Teichmtiller modular forms
over k, which turns out to be a square, according to Ichikawa [10].
The equivalence is then obtained by the action of quadratic twists on
geometric Siegel modular forms.

The second part of the article uses a natural isomorphism between
the algebra of invariants on the space of ternary quartic forms with non
zero discriminant and the algebra of Teichmiiller modular forms on the
space of non hyperelliptic curves of genus 3. Hence, the form t*y,4, re-
stricted to nonsingular non hyperelliptic curves, can be interpreted as an
invariant and this provides a simple proof of a formula of Klein, which as-
serts that y,g(JacC, j) is the square of the discriminant of C (Th. 2.2.3).
The original relevance of Klein’s formula for the above criterion was one
of Serre’s insights.

This article is organized in two sections. In § 1.1, we review the neces-
sary elements from the theory of Siegel and Teichmiiller modular forms,
then in §1.2 we introduce the action of isomorphisms and see how the
action of twists is reflected on the values of modular forms, and we prove
our main result in § 1.3. The second section deals with invariants: in § 2.1,
we give a geometric description of invariants of ternary forms, and in
§2.2, we prove Klein’s formula. Finally, in § 2.3 we discuss the reasons
behind the failure of a straightforward generalization of the theory in
higher dimensions.

We would like to thank J.-P. Serre and S. Meagher for fruitful discus-
sions, and Y. F. Bilu and X. Xarles for their help in §2.3.

1. Modular forms and abelian threefolds

1.1. Siegel and Teichmiiller modular forms

References for the following results are [3], [4], [5], [7]. Let g = 2
be an integer and A, be the moduli stack of principally polarized abelian
schemes of relative dimension g. Let 7t: V, — A, be the universal abelian

scheme and n*Q\ll a, —Ag the rank g bundle, usually called Hodge bun-
g 8

dle, induced by the relative regular differential forms of degree one on
V, over A,. The relative canonical bundle over A, is the line bundle

g
_ 1
w = /\”*Qvg/Ag'
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Let R be a commutative ring and h be a positive integer. A geometric Siegel
modular form of genus g and weight h over R is an element of the R-
module

S.n(R) =T(A;®R, ©®".

One proceeds similarly with curves. Let M, denote the moduli stack of
smooth and proper curves of genus g. Let ©: C, — M, be the universal
curve, and let A be the invertible sheaf associated to the Hodge bundle
on Mg, namely

g
— 1
A= /\ n*ch/Mg.
A Teichmdiller modular form of genus g and weight h over R is an element
of

T, n(R) = (M, ®R, A®").
Assume now that R=k is a field. For a projective nonsingular variety X
defined over k, we denote by Q;[X]=H(X, Q; ®k) the finite dimen-
sional k-vector space of regular differential forms on X defined over k.
Let (A, a) € A; ® k be a principally polarized abelian variety of dimension
g defined over k (resp. C €M, ® k a genus g curve defined over k). We
denote by

g g
wlAl = \QUAT  (resp. A,[C1 =~ /\ Q4ICD)
the k-vector space of sections of w (resp. A) over (A, a) (resp. C). For

fe Seh (k) (resp. f eTg,h(k)), and w a basis of w;[A] (resp. A a basis of
A[C]), we put

fUA @), w) =f(A a)/w®h ek, (resp. f(C,A)=f(C)/A®" k). (1)

In this way a modular form defines a rule which assigns the element
fU(A, @), w) € k (resp. f(C,A)) to every such pair ((A,a), w) (resp.
(C, A)) which depends only on k-isomorphism class of the pair. With
this definition, the following proposition holds, see for instance [11]:

Proposition 1.1.1. The Torelli map t: My — A,, associating to a curve
C its Jacobian Jac C with the canonical polarization j, satisfies t*w =2,
and induces for any field k a linear map

t: S, (k) =T(A, ®k, ©®") — T, (k) =T(M,®k, A°"),

For any curve C/k of genus g and any f € S, (k), one has [t"f]1(C) =
=t"[fJacC, j)], i.e. for any basis w of wy[JacC],

f((JacC, ), w) = [t'f1(C, ) ift'w=A. O
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Assume now that R=k = C. Let R, ; (C) be the vector-space of analytic

Siegel modular forms of weight h on H, ={7 €M, (C)t{’c =1,Im7 >0},
consisting of complex holomorphic functions ¢ (t) on H, satisfying

b
¢ (M.7) = det(ct +d)h-qb(r) ifM= (Ccl d) € Spy, ().

To a point T € H, we associate the abelian variety A, =C#/(Z¢ + TZ*)
with its natural principal polarization j. Since the tangent space to A, is
canonically isomorphic to C¢, dz; A--- Adz, is a section of

g
w®C =~ g, ® /\(CH).

Thus, it induces a map from R, ,(C) to S, ;,(C). More precisely, the fol-
lowing result holds [5, p.141]:
Proposition 1.1.2. If f€S,,(C) and T €H,, let

f(o) = @im) " f (A, )/(dz A~ Adz)®"

where (21, ...2,) is the canonical basis of C$. The map f -—>fis an isomor-
phism S, ,(C)——R, ,(C). O

In the sequel we shall need some specific Siegel modular forms. We
recall the definition of Thetanullwerte with characteristics

&
£ = |:£ i| € {0, 1}¥ & {0, 1}¢,

2

given, for T € H,, by

_ . €1 ¢ ) £\t
Olel(T) = nezzs exp(ln(n+ 5 )T (n+¢e,/2) +217r(n+ 5 ) (82/2)).
Let S, be the set of even characteristics, that is, siez =0 (mod 2). For
g=2and T €H,, we puth= ISg|/2:2g‘2(2g+ 1) and

- (=12
() = m};&[ 0el().

g
In [13], Igusa proves that if g > 3, then ¥, €R,;(C). Starting from the
analytic Siegel modular form Y, we define, thanks to Prop.1.1.2, a geo-

metric Siegel modular form
xn(AL) = QIm)E- 7, (1) (dzy A+~ Adz)®" € 8, (C).

Ichikawa proved several important results on this modular form that we
summarize in the following proposition, see [11, Prop. 3.4] and [12]:
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Proposition 1.1.3. The geometric Siegel modular form y;, belongs to
S 1 (Z). Moreover, there exists a Teichmiiller modular form py, 5 € Ty j, /5 (Z)

such that . )
£ (xn) = (Uny2)” 0 (2)

1.2. Action of isomorphisms
Let k be any field and ¢ : (A, a’) — (A, a) a k-isomorphism of prin-
cipally polarized abelian varieties. Choose a basis (w;, ..., wg) of Q% [A]
and put @ =w;y A ... Aw, € wi [A]. If v; = ¢"(w;), then (y4, ..., 7,) isa
basis of Q! #[A’] and by invariance under Iz-isomorphisms

flA, @), w) = f((A,d),y) wherey =y, A...Ay, € wr[A'].

If (w}, ..., w;) is another basis of Q'z[A’] and o’ =w)| A ... A cofg, we
denote by My € GLg(IZ) the matrix of the basis (y;) in the basis (wg).
Then one proves easily:

Proposition 1.2.1. In the above notation,
fU(A @), w) = det(My)"- f((A, d'), o). O

First of all, from this formula applied to the action of —1, we deduce
that, if k is a field of characteristic different from 2, then S, , (k) ={0} if
gh is odd. From now on we assume that gh is even and char k # 2.

Corollary 1.2.2. Let (A, a) be a principally polarized abelian variety
of dimension g defined over k and f €S, (k). Let wy, ..., w, be a basis of
Q,[A], and let w=w; A... Aw, € wi[A]. Then

f(A, @) = f((A,a), w) mod* k*" € k/k*h

does not depend on the choice of the basis of Qi [A]. In particular f(A, a)
is an invariant of the k-isomorphism class of (A, a). O

Corollary 1.2.3. Assume g odd. Let f €S,,(k) and ¢: (A’,a") —
— (A, a) be a non trivial quadratic twist. There exists c€k \ k2 such that
f(A, @) =c"?f (A, d"). Thus, if f(A, a) #0 then f(A,a) and f(A’,a’) do
not belong to the same class in k* /k*".

Proof. Assume that ¢ is given by a quadratic character ¢ of Gal(k /k).
Then

d? = ¢e(0)8-d, where d= det(M,) € k, o eGal(k/k).

Since g is odd, by our assumption, h is even. Moreover d?=¢(c)dd’ €k.
But d ¢ k since there exists o such that e(c) = —1. Using Prop.1.2.1 we

find that
fUA, @), w) = dHM2f (A, d), ).
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Since d? is not a square in k, if f(A, a) #0 then f(A,a) and f(A’, a’)
belong to two different classes. O

Let (A, a) be a principally polarized complex abelian variety of di-
mension g defined over k C C. The period matrix of (A, a) defined by a
basis wy, ..., w, of Qi[A] and a symplectic basis v, ..., o, of H;(A, Z)
for the polarization a, is the Riemann matrix

for = [o
r1

T2g

for = [o
ri

Y2g

Q= [91 Qz] =

One puts 7 := Q;Ql € H; in such a way that (A, a) is C-isomorphic
to A.. If C is a complex curve of genus g, one uses the same notation
for the period matrix of C defined by a basis w;, ..., w, of Qi [C], and a
symplectic basis y4, ...y9, of H;(C, Z) for the intersection pairing. By the
canonical identifications

Q'[c] = Q'[JacC], H,(C,Z) = H,(JacC,Z),

the period matrix of C is also the period matrix of (JacC, j) defined
by the corresponding bases. Applying Prop.1.2.1 with the isomorphism
Z— lez, we get the following lemma.

Proposition 1.2.4. In the above notation, let w = wq A ... A w, €
€ w[A]. Then ~
G}

flA a), w) = (2in)ghdemg_

O

1.3. Jacobian among abelian threefolds

Serre stated in [16] and [20] the following precise form of Torelli’s
theorem:

Theorem 1.3.1. Let (A, a) be a principally polarized abelian variety of
dimension g > 1 over a field k, and assume that (A, a) is isomorphic over k
to the Jacobian of a nonsingular curve C. Then C can be defined over k, and

(i) If C is hyperelliptic, there is an isomorphism, defined over k, from
(A, a) to (JacC, j).
(i) If C is not hyperelliptic, there exists a quadratic character

e: Gal(k®P/k) — {1}
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and an isomorphism, defined over k, from the twisted abelian variety

(A, a), to (JacC, j). Hence, (A, a) is k-isomorphic to a Jacobian if and

only if € is trivial.

We restrict to the case where k C C and we now give a formula for ¢.
In order to do so, we need to recall some geometric results by Igusa.
Denote by %49 the modular form defined by the thirty-fifth elemen-
tary symmetric function of the eighth power of the even Thetanullwerte.
In his beautiful paper [13], Igusa proves the following result [loc. cit.,
Lem. 10 and 11].

Theorem 1.3.2. If T € Hj, then:

1) (A,, j) is decomposable if y,5(7) = 2140(7) =0;
(i) (A, ) is a hyperelliptic Jacobian if 715(7) =0 and %4 (7) #0;
(iii) (A., j) is a non hyperelliptic Jacobian if y15(7) #0. O

We are now able to prove our main result which can be seen as an
arithmetic analogue of Igusa’s result.

Theorem 1.3.3. Let (A, a) be a principally polarized abelian threefold
defined over k C C. Let (w1, w,, w4) be any basis ofﬂi [A]l and (y4, ..., Y6)
a symplectic basis of H,(A, Z) for the polarization a. Let Q= [Q; Q,] be
the period matrix defined by these bases, and T = leﬂl.

@) Ifflmo (t) =0 and ¥,5(7t) =0 then (A, a) is decomposable over k. In
particular it is not a Jacobian.
(i) If £140(7) #0 and 7153(t) =0 then there exists a hyperelliptic curve
C/k such that (JacC, j) ~ (A, a).
(iii) If ¥15(7) #O then (A, a) is isomorphic to a non hyperelliptic Jacobian
if and only if

X1(7)

115 = 218((A, @), @) = im)* Forg

is a square in k, with w = w; A wy A w45 € Wi [Al

Proof. Only the third point is new. Indeed, the first and second
points directly follow from Th.1.3.2 and Th.1.3.1. Suppose now that
(A, a) is isomorphic over k to the Jacobian of a non hyperelliptic genus
3 curve C/k. Using successively Prop.1.1.1 and Prop.1.1.3, we get

x18((A,a), w) = t*(lls)(c> A) = .ug(c> A)z € kxz,

with A =t*w. Hence, the desired expression is a square in k*. Its ana-
lytic expression on the right hand side of (iii) is a direct application of
Prop.1.2.4.
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On the contrary, Cor. 1.2.3 shows that if (A, a) is a quadratic twist of
a Jacobian (A’, a’) then there exists a non square c € k such that

H1s(A, @) = jig(A, a).
As we have just proved that j,4(A’, a’) is a square in k™ /k*!® this im-
plies that y15((A, a), w) is not. O
Corollary 1.3.4. In the notation of Th.13.3, the quadratic charac-
ter € of Gal(k/k) introduced in Th.13.1 is given by (o) =d°/d, with
d = /x1s, and with an arbitrary choice of the square root. O

2. Invariants and Klein’s formula

Let d > 0 be an integer. In this section k is an algebraically closed
field of characteristic coprime with d.

2.1. Geometric invariants for nonsingular plane curves

We first review some classical invariant theory. Let E be a vector
space of dimension n over k. The left regular representation r of GL(E)
on the vector space X; = Sym?(E*) of forms of degree d on E is given by

r(w): F(x) — (u-F)(x) = F(ux)

forueGL(E), Fe X, and x€E. If U is an open subset of X; stable under
r, we still denote by r the left regular representation of GL(E) on the
k-algebra @ (U) of regular functions on U, in such a way that

r(uw): ®(F) —» (u-®)(F) =®(u-F),

ifueGL(E), € 0(U) and F €U. If h€Z, we denote by g, (U) the sub-
space, stable under r, of homogeneous elements of degree h. An element
® € 0,(U) is an invariant of degree h on U if u-® =& for every u € SL(E),
and we denote by Inv,,(U) the subspace of invariants of degree h on U.
Hence, if # € 0(U), and if w and n are two integers such that hd =nw,
then @ €Inv, (U) if and only if

u-® = (detu)¥® forevery u € GL(E),

and we call w the weight of . Let F € X;, and denote by g4, ..., q, the
partial derivatives of F. The discriminant of F is

e dr — 1 : _ 4(@-D"-(-D"/d
DiscF =c_ ;Res(qy, ..., q,), with ¢, 4= d@-1"-nn/d.

where Res(qy, ..., q,) is the multivariate resultant of the forms q, ...q,
[6, p.426], the coefficient c, 4 being chosen according to [20]. We refer
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to [15] for a detailed study of the discriminant of a ternary form, and the
computation of the discriminant of a Ciani quartic.

From now on we assume dim E =n = 3. The universal curve over X
is the variety

Yq={(F, x) € XgxP* | F(x) =0}.
The nonsingular locus of X, is the principal open set
X3 = Kgdpise = {F € X4 | Disc(F) # 0}-

If Yg is the universal curve over the nonsingular locus X9, the projection
is a smooth surjective k-morphism

.0 0
TYg— Xy

whose fibre over F is the non singular plane curve Cp. If F € Xg(k),
we recall the usual way to write down explicitly the classical basis of
Q[Crl=H"(Cp, Q(, ®K), see [2, p.630]. Let

n(l) = f—(xzdx3_x3dx2) n(Z) — f Gegdxy — x;dxs)

4 ’ d2 ’
@) _ Sladx, —xpdxy)

= q

3
where q4, g4, q5 are the partial derivatives of F, and where f € X;_5. The
forms n@ glue together and define a regular differential form 7 f(F) e
S Qi[CF]. Since dimX,_3 =(d — 1)(d — 2)/2 =g, the linear map f —

— 1 (F) defines an isomorphism

>

Xq_g — QU[CF].

We denote 75, ..., 1, the sequence of sections obtained by substituting for
f in ny the g members of the canonical basis of X;_3, enumerated accord-
ing to the lexicographic order. Then n=mn; A ... A7, is a section of

g
_ 1
a=/\ T8y xos
the Hodge bundle on Xg. The map u: x+— ux induces an isomorphism
u: Cypp — Cp

Hence, it has a natural action u*: Qi[CF] — Qi [C,.r] on the differen-
tials and therefore, on the sections of a”, for h € Z. More specifically,
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if se (X%, a®"), one can write s =& - n®" with ¢ < 0(Xg); for F e X9,
one has
u*s(F) = &(F) - (wn(F))®".

The proof of the following lemma is left to the reader.
Lemma 2.1.1. For any u€ G and any F € XY, the section n €T (X%, a)
satisfies,

W (F) = det)™ -n(u-F), with w, = (‘31) = ‘;—g eN. O

For any h € Z, we denote by I'(X%, a®")¢ the subspace of sections
seT'(X%, a®") such that u*s(F) =s(u-F) for every u€G and F € X3.
Proposition 2.1.2. Let h > 0 be an integer. The linear map

& p(@) = &-n"
is an isomorphism
P Invg, (X)) — T(XY, a®MHF.

Proof. Let ® € Invgh(Xg), s=p(P) =9 -n®", and w=dgh/3, the

weight of é. Then using Lem. 2.1.1,
u*s(F) = ¢(F) - (w'n(F)®" = &(F) - det(u) " - n(u-F)®"
= det(@)¥®(F) -nu-F)®" =dw-F) -nu-F)®" = su-F).

Hence, p(®) € I'(X%, A®M)G. Conversely, the inverse of p is the map
s+—s/1®", and this proves the proposition. O

2.2. Modular forms as invariants

Let d > 2 be an integer and g = (d 5 ! ) Since the fibres of Y§ — X
are nonsingular non hyperelliptic plane curves of genus g, by the univer-
sal property of M, we get a morphism

p: Xg — M.
and p*A = a by construction. This induces a linear map
p*: T (k) — T(X5, a®h).
Moreover, for u € G, since u: C,y — Cy is an isomorphism, we get the

following commutative diagram

ALCr] —“> ALC, ]

T

alF] —“ a[u-F].
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For any f €T, (k), the modular invariance of f means that

uf(Cp) = f(Cyp)-
Then

u[(p" W] =u[p*(f(CpN] = p [u"f(CH] =
=p[f(Cup)] =P H-F),

and this means that p*f € (X%, a®")¢. If g=3 then p* is a linear iso-
morphism. Combining this result with Prop.2.1.2, we obtain:
Proposition 2.2.1. For any integer h > 0, the linear map o =p~!o p*
is a homomorphism:
Tyn(k) — Invg (X)

such that
o(f)(F) = f(Cp,A)

with 2= (p*)~'n, for any F € X{ and any section f €T, (k). If g=3, then
o is an isomorphism. O

We finally make a link between invariants and analytic Siegel modu-
lar forms. Let F € Xg (©)and (04, ..., Ng) the basis of regular differentials
on Cp defined in § 2.1. Let (74, ...79,) be a symplectic basis of H,(C, Z)
for the intersection pairing. Let Q = [Q; Q,] the period matrix of Cy
defined by these bases, and T=0Q,'Q;.

Corollary 2.2.2. Let f €S, ,(C) be a geometric Siegel modular form,

fe R, ;,(C) the corresponding analytic modular form, and & =o (t*f) the
corresponding invariant. In the above notation,

h f(0)
detQ”

Proof. Let A= (p*)"'(n) and w = (t*)"(A). From Prop.1.1.1 and
2.2.1, we deduce

®(F) = (t*f)(Cp, 1) = fJacCyp, w),

and Prop. 1.2.4 give the result, since Q is also the period matrix of Jac Cp.

O

We are now ready to give a proof of the following result [14, Eq. 118,
p.462]:

Theorem 2.2.3 (Klein’s formula). Let F € XZ(C) and Cy be the cor-

responding smooth plane quartic. Let (1, 14, N3) be the classical basis of

Q}C [Cr]l and (y4, ..., Ye) be a symplectic basis of H,(Cy, Z) for the inter-

d(F) = (2im)8
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section pairing. Let Q= [, Q,] the period matrix of Cr defined by these
bases, and T =, 'Q,. Then

215(7T)
det(Q,)18"

Proof. Cor.2.2.2 shows that for any F € Xg the invariant I =
=0 ot"(y4g) satisfies

Disc(F)? = (2m)>*

8(T)
918

Moreover Th.1.3.2 (iii) shows that I(F)#0 for all F XZ. Since the dis-

criminant is an irreducible polynomial, as immediate consequence of

Hilbert’s Nullstellensatz we get that I = ¢ Disc" with ¢ € C* a constant

and n €N. Since I is an invariant of weight 54 and Disc an invariant of

weight 27, n=2. Finally, it is proven in [15, Cor. 4.2] that Klein’s formula

holds true for any Ciani quartic with c=1. O
Remark 2.2.4. Th.2.2.3 implies that

Uo(Cp, A) = £DiscF.

I(F) = im)* 22 5 4

This might be deduced from the definition of u,, although it seems that
this fact was not observed before.

2.3. Beyond genus 3

First of all, note that an analogue of Klein’s formula has been derived
in the hyperelliptic case by Lockhart [17] and also by Guardia [8]. Their
formula is a direct consequence of Thomae’s formula [21]. Now, it is
natural to try to extend the preceding results to the case g > 3. For Klein’s
formula and g =4, Klein himself, in the footnote of p.462 in [14], gives
the amazing formula

Xes(T)

der()® = c-A(C)*-T(C)S. 3)

Here 7 =Q,'Q,, with Q=[Q; Q,] a period matrix of a genus 4 non
hyperelliptic curve C given in P* as an intersection of a quadric Q and
a cubic surface E. The elements A(C) and T(C) are defined in classical
invariant theory as, respectively, the discriminant of Q and the tact in-
variant of Q and E (see [19, p.122]). No such formula seems to be known
in the non hyperelliptic case for g > 4.

Let us now look at what happens when we try to apply Serre’s ap-
proach for g > 3. To begin with, when g is even, we cannot use Cor.1.2.2
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to distinguish between quadratic twists. Let us assume that g is odd.
Cor. 1.2.3 shows that there exists c € k \ k? such that

an(A, ) =" 7,(A, )

for a Jacobian (A, a) and a quadratic twist (A’, a’). What enabled us to
distinguish between the two when g =3 is that h/2=9 is odd. However
as soon as g > 3, the 2-valuation of h/2 is g —3 >0, so it is not enough
for 7, (A) to be a square in k to make a distinction between A and A’. It
must rather be a 2672-th power in k. It can be easily seen from the proof
of [22, Th.1] that t*(y;) does not admit a fourth root. According to [1] or
[23] this implies j; (A, a) is not a 26~2-th power in k for infinitely many
Jacobians (A, a) defined over number fields k. So we can no longer use
the modular form y; to characterize Jacobians over k.
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On logarithmic derivatives of zeta functions
in families of global fields

(with P. Lebacque)

The goal of this paper is to get a formula for the limit of logarithmic
derivatives of zeta functions in families of global fields (assuming GRH
in the number field case) with an explicit error term. This result is close
in spirit both to the explicit Brauer—Siegel and Mertens theorems from
[2] as well as to the generalized Brauer—Siegel type theorems from a
paper by the first author. We also improve the error term in the explicit
Brauer—Siegel theorem from [2], allowing its dependence on the family
of global fields under consideration.

Throughout the paper the constants involved in O and < are abso-
lute and effective (and, in fact, not very large). Let K be a global field
that is a finite extension of QQ or a finite extension of F.(t), in the lat-
ter case K =F,(X) for a smooth absolutely irreducible projective curve
over IF,, where T, is the finite field with r elements. We will often use the
acronyms NF or FF for the statements proven in the number field and the
function field cases respectively. We shall often omit the index K in our
notation in cases when it creates no confusion.

For a number field K let ng and Dy denote its degree and its discrimi-
nant respectively. Let g be the genus of a function field, that is the genus
of the corresponding smooth projective curve and let gx =log 4/ |Dg| in
the number field case. Let 22 (K) be the set of (finite) places of K and let
&, =%,(K) be the number of places of norm q in K, i.e.

¢, =H{pe P &) |Np=gq}

In the number field case we denote by ¢y =r; and ¢ =r, the number of
real and (pairs of) complex places of K respectively.
Recall that the zeta function of a global field K may be defined as
(k@) =[] —-g™,

q

P. Lebacque, A. L. Zykin, On logarithmic derivatives of zeta functions in families of global
fields, Doklady Mathematics, 81 (2010), no. 2, 201—203.
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where the product runs over all prime powers q. We denote by

®,logq
Zx() =-XoT

q

its logarithmic derivative. One knows that { (s) can be analytically con-
tinued to the whole complex plane and satisfies a functional equation
relating {x(s) and {x(1 —s). Furthermore, in the function field case
{x (s) is a rational function of t =r"°. Moreover,

l_[(rct D(a;t—1)
Cx(®) = —0a-ro

and |7t;| = +/r (the Riemann hypothesis). For the rest of the paper we
will assume that the Generalized Riemann Hypothesis is true for zeta
functions of number fields, that is all the non-trivial zeroes of £ (s) are
. 1
on the line Res= 75
Here are our main results:

Theorem 1 (FF). For any function field K, any integer N = 10 and
any € =g, +1€; such that e,=Re e >0 we have:

+logr Z (%—'—8)4_1; -

roitt—1

=o(%; (1+4 )) +0(r?2).

Theorem 2 (NF, GRH). For a number field K, an integer N = 10 and
any € =€, +1g; such that ¢, =Re e >0 we have:

% f‘Prf

=1 r(are)s

¢, logq

1
Z 3 +2(3 +e)+€_%=
_o(|8| el (g +nlogh)™ = )+o(«/_)
0

Let us explain a little bit the meaning of these theorems. It was
known before (see below) that the identities (without the error terms)
of the theorems are true in the asymptotic sense (when N =« and g=
for families of global fields). Our theorems give the “finite level” versions
of these results. They allow to estimate how well the cutoffs of the series
for Zy (s) approximate it away from the domain of convergence of this
series (which is Res > 1) when we vary K.
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The proofs of these theorems are based on the Weil explicit formula.
However, in the number field case the analytical difficulties are rather
considerable, so the explicit formula has to be applied three times with
different choices of test functions. We note that in both cases we also
obtain the new proofs of the basic inequalities from [3] and [5] (c.f.
formulae (1) and (2) below).

Our next results concern families of global fields {K;} with growing
genus g; = g(K;). Recall ([4],[5]) that a family of global fields is called
asymptotically exact if the limits

ba = P (1K;}) = lim

exist for each a which is a power of r in the function field case and each

prime power and a =R and a =C in the number field case. The num-

bers ¢, are called the Tsfasman—Vladut invariants of the family {K;}.

From now on we assume that all our families are asymptotically exact.
We introduce the limit zeta function of a family {K;} as

Cixy(8) = l_[(l _q_s)_¢q-
q

We will also denote by Zy,(s) =— Z qzq

@,(Ki)

l

T its logarithmic derivative.

The basic inequality (c.f. [3] and [5]) can be formulated as

i );ﬁi’rf <1 o
f=1r2 —1

in the function field case and as

SR + 6a(logVED + 4 D) bclosEm +r) <1 @

in the number field case. It follows from the inequality that both the

product and the sum converge absolutely for Res > 3 L and thus define

analytic functions for Res > L

Let us first formulate a corollary of Theorems 1 and 2.

Corollary 1. For an asymptotically exact family of global fields {K;},
an integer N =10 and any € =¢, +i¢; such that ¢, =Re¢e >0 the follow-
ing holds:

1) in the function field case:

% fd)rf lolgr Z{m}(% +8) - O(r}‘)N (1+ ’31_0))
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2) in the number field case with the assumption of GRH:

$qlogq 1 (le|*+e]) log® N
4+ Zxil5+¢e) =0 —F7—).
quq%H—l {Kl}(Z ) ( ggNEO )

This corollary, in particular, implies the convergence of the loga-
rithmic derivatives of zeta functions of global fields to the logarithmic

derivative of the limit zeta function for Res > =. This result (without
an explicit error term but with a much easier proof) has been recently
obtained in paper by the first of the authors in the function field case.

Our next result concerns the behaviour of Z (k) (s) ats= 1.

Theorem 3. For an asymptotically exact family of global fields {K;}
there exists a number & >0 depending on {K;} such that:

1) in the function field case:

N S 1 1 —6N
2T g Zwa(3) =007

2) in the number field case, assuming GRH, we have:

$4logq 1 5
———+Z;yl5 ) =0NN°).
q;v Vi—1 {Kl}( 2 )
Let us formulate a corollary of this result which, in a sense, im-
proves the explicit Brauer—Siegel theorem from [2]. We denote by xj. =

log xy,

=Res;_; (i (s) theresidue of (i (s) ats=1. We let k = 5, =lim 2
L 1 L l—>°° l

One knows ([4] and [5]) that for an asymptotically exact family this limit
exists and equals log { &,y (1) (we assume GRH in the number field case).
In fact, in the number field case it can be seen as a generalization of the
classical Brauer—Siegel theorem (cf. [1]).

Corollary 2. For an asymptotically exact family of global fields {K;}
there exists a number & >0 depending on {K;} such that:

1) in the function field case:

S ¢, log =~ Jro(—1 )
o =K ;
M e

2) assuming GRH, in the number field case:

q 1
log—L- = —L )
q§N¢q -1 K+O(N%+5logN)
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On logarithmic derivatives of zeta functions
in families of global fields

(with P. Lebacque)

Abstract. We prove a formula for the limit of logarithmic deriva-
tives of zeta functions in families of global fields with an explicit error
term. This can be regarded as a rather far reaching generalization of
the explicit Brauer—Siegel theorem both for number fields and function
fields.

1. Introduction

The goal of this paper is to prove a formula for the limit of logarith-
mic derivatives of zeta functions in families of global fields (assuming
GRH in the number field case) with an explicit error term. This result
is close in spirit both to the explicit Brauer—Siegel and Mertens theo-
rems from [9] and to the asymptotic theorem for Dedekind zeta functions
from [17]. We also improve the error term in the explicit Brauer—Siegel
theorem from [9], allowing its dependence on the family of global fields
under consideration.

Throughout the paper the constants involved in O and < are abso-
lute and effective (and, in fact, not very large). Let K be a global field
that is a finite extension of Q or a finite extension of F,(t), in the lat-
ter case K =F,(X) for a smooth absolutely irreducible projective curve
over IF,, where . is the finite field with r elements. We will often use the
acronyms NF or FF for the statements proven in the number field and the
function field cases respectively. We shall often omit the index K in our
notation in cases when it creates no confusion.

For a number field K let ng and Dy denote its degree and its discrimi-
nant respectively. Let g be the genus of a function field, that is the genus
of the corresponding smooth projective curve and let gx =log 4/ |Dg| in

Philippe Lebacque, Alexey Zykin, On logarithmic derivatives of zeta functions in families
of global fields, International Journal of Number Theory, 7 (2011), no. 8, 2139—2156.
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the number field case. Let & (K) be the set of (finite) places of K and let
&, =%,(K) be the number of places of norm q in K, i.e.

=Kp € 2K |Np =g}
In the number field case we denote by ¢y =1, and ¢ =r, the number of
real and complex places of K respectively.
Recall that the zeta function of a global field K is defined as
(k) =[] -g™™,
q
where the product runs over all prime powers q. We denote by

&, logq
2@ =-Xgy

q

its logarithmic derivative. One knows that { (s) can be analytically con-
tinued to the whole complex plane and satisfies a functional equation
relating {x(s) and {x (1 —s). Furthermore, in the function field case
{x (s) is a rational function of t =r~°. Moreover,

[Tt -1, e-1)
j=1
k) =—g=pa-m

and |7;| = +/r (the Riemann hypothesis). For the rest of the paper we
will assume that the Generalized Riemann Hypothesis is true for zeta
functions of number fields, that is all the non-trivial zeroes of £ (s) are

1.1

on the line Res = l.

Here are our first main results:

Theorem 1.1 (FF). For any function field K, any integer N = 10 and
any € =g, +1€; such that e, =Re & >0 we have:

v e (3-)
fglr(%{?ﬁ+logr ZK( te )+rre*%2_1 :O(rff"’(l—'—g_lo)).

Theorem 1.2 (NF, GRH). For a number field K, an integer N = 10
and any € =gy +1ie; such that ey=Re e >0 we have:

1

1\2~
¥, logq 1 (v+3)
quq%q”—l +ZK(§ +8)+—€_2% =
_ O(Isl‘:zrlsl(g+ ) ];g]EON)

0
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Let us explain a little bit the meaning of these theorems. It was
known before (see [17] and also below) that the identities (without the
error terms) of the theorems are true in the asymptotic sense (when
N = and g = o for families of global fields). Our theorems give the
“finite level” versions of these results. They allow to estimate how well
the cutoffs of the series for Zx (s) approximate it away from the domain
of convergence of this series (which is Res > 1) when we vary K.

We give the proof of these theorems in Sections 2 and 3 respectively.
Both proofs are based on the Weil explicit formula. However, in the num-
ber field case the analytical difficulties are rather considerable, so the ex-
plicit formula has to be applied three times with different choices of test
functions. We note that, as indicated in the remarks in the corresponding
sections, in both cases we obtain the new proofs of the basic inequalities
from [14] and [16].

Our next results concern families of global fields {K;} with growing
genus g; = g(K;). Recall [15, 16] that a family of global fields is called
asymptotically exact if the limits

$o = o (1Ki}) = lim

exist for each a which is a power of r in the function field case and each
prime power and @ =R and a =C in the number field case. The numbers
¢, are called the Tsfasman—VIadut invariants of the family {K;}. From
now on we assume that all our families are asymptotically exact.

We introduce the limit zeta function of a family {K;} as

Ly ) = [T =g %
q

We will also denote by Z,(s) =— ), q;q T
q

It follows from the basic inequality (cf. [14] and [16] or Sections 2 and

3 of this paper) that both the product and the sum converge absolutely

@,(K)

l

its logarithmic derivative.

for Res > % and thus define analytic functions for Res > %

Let us first formulate a corollary of Theorems 1.1 and 1.2.

Corollary 1.3. For an asymptotically exact family of global fields {K;},
an integer N = 10 and any € = ¢, +1ie, such that e, =Ree >0 the follow-
ing holds:

1) in the function field case:

% fd)rf lolgr Z{m}(% +e)= O(rEION (1+ ’31_0))
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2) in the number field case with the assumption of GRH:

¢, logq 1 _ A(Uel* +leDlog® N
qg,—qéﬂ_l”ue}(z“)—O(—ggNeo )

This corollary, in particular, implies the convergence of the loga-
rithmic derivatives of zeta functions of global fields to the logarithmic

derivative of the limit zeta function for Res > % This result (without
an explicit error term but with a much easier proof) has been recently
obtained in [17].

Our next result concerns the behaviour of Ziky (s)ats==.

Theorem 1.4. For an asymptotically exact family of global fields {K;}
there exists a number & >0 depending on {K;} such that:

1) in the function field case:

Nofes 1 1 _

fa rr—1 T logr 'Z{Ki}(i) =00™);
2) in the number field case, assuming GRH, we have:

¢,logq 1 _
3 S 2 (3) =00,

Let us formulate a corollary of this result which, in a sense, im-
proves the explicit Brauer—Siegel theorem from [9]. We denote by x,, =

N[ =

qsN

log x,

=Res,_; Q’Ki (s) the residue of {Ki (s)ats=1.Weletk= Kk}= lim Z
One knows ([15] and [16]) that for an asymptotically exact family this

limit exists and equals log ¢ {Ki}(l) (we assume GRH in the number field
case). In fact, in the number field case it can be seen as a generalization
of the classical Brauer—Siegel theorem (cf. [7]).

Corollary 1.5. For an asymptotically exact family of global fields {K;}
there exists a number & >0 depending on {K;} such that:

1) in the function field case:

> log =" — x4+ 0f L —
gl ¢, log rf—1" Kt (r(%Jré)NN)’
2) assuming GRH, in the number field case:
q 1
op 227 = o ).
q%:\](bq gq_l N%J"slogN
We prove Theorem 1.4 and both of the Corollaries 1.3 and 1.5 in
the §4.
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2. Proof of Theorem 1.1

We will use the following analogue of Weil explicit formula for zeta
functions of function fields, see [12] or [5] (in the case of varieties over
finite fields) for a proof.

Theorem 2.1. For a sequence v = (v,) such that ). vnr% is conver-

n=1
0

gent, the series Y. vnr_% > m®,n is also convergent and one has the fol-
n=1 mln
lowing equality:

s n g T T
Va2 2 f B =, VA 4, ) — —= )+ (=
nz:l n ler:lf rf 1/)u( ) 1/)v( ) J;l(lpu(ﬁ) wv(ﬁ))
where the j, Tj are the inverse roots of the numerator of the zeta function

of K, g=gx and ¢, () = D, v,t"
n=1

Let us take the test sequence v, =v,(N) = r% if n <N and O other-
wise. Introducing it in the explicit formulae, we get

SO(Nx 8) = Sl(N7 8) +SZ(N7 8) _83(N7 8)7

where
N 1 N 1
So(N, &) = >, r_"(5+5)2f¢rf, S1(N,e) =D, r”(i_g),
n=1 fln n=1
N . g N .
S,(N, &) = 3 (i), Sy, ) = 37 ST 4 A,
n=1 j=1n=1

Let us estimate each of the S;.

Calculation of Sy:
Let us first change the summation order in Sy:

N —n(l+e) N [N/f] 1
SoWN, &) = 2 r " X fe = 3 fo D] (i)’
n=1 fln f=1 m=1 r’\2
Now
N 1
Ry(N, &) = . f¢rfW —So(N, ) =
f=1 r\2 -1

N 1 [N/f1 )

_ 1N (i) 2 S ~fn(4+e)
f_lqurf(r(%ﬂ)f_l 3 ) e 3 .

f=1 m=[N/f]+1
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Taking the absolute values, we can assume that ¢ is real. Summing
the geometric series, we obtain

0< 3 oyt Sy, e) < 3 I L
= OO - are)f g

We now use the Weil inequality fé., <rf +1+2g Vrf , and split the
above sum into two parts in the following way. For f >[N /2] we have
[N/f1=1 and for f <[N/2] we use the inequality f[N/f1=>N— f.

ROV, 6| < % (14r/ +2gvrf) _
0T == A e (r(%+e)f_1) =

(/2] r(%’g)f+2gr‘f€ N r(%’g)f+2gr‘f€ -
fz pnlare) F>IN/2] rf(3+) D
[N/2] ( o )
> (rf+2grz)+8 S 42gr Bt <
M) f5 £>IN/2]

8 rrtl FEt 3 8reN 16gr’%’“"

<

rN(%+e)( =1 T8 A

<

Calculation of Sq:

(o]

<

~ —2¢ 1 =
-r 1—r32

)&%?(gr 4-l— 8)

S (N g) _ r__g r(__e)N—l r(%_E)N—l

Calculation of S,:
_ (30N
0<S,(N, )] < 152

1
rateo—1

Calculation of Sj:

g . =
Ry(N, &) = S5(N, &) — Z( L ):

PR T

)G

r2

—ZZ(

j=1n=N+1"12
The absolute value of the right hand side can be bounded using the fact
that |7 <ri:

—Neo —Nso

2g réo —1 ~ 4g

>

j=1n

IR3(N, &)| =

Sy

2
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From the expression (1.1) of {x(s) as rational function in t =r"° we
can easily deduce the following formula for its logarithmic derivative:

1 1 j
—Zi(5+¢)=— — -+ + :
logr K( ) pite 1 e Z( e —m r%ﬂ_ﬁj)
Putting it all together we get the statement of the theorem. O

Remark 2.2. Using our theorem we can easily reprove the basic in-

equality from [15]. We take a real ¢ <1 and remark that

4’
1 1
—z(3+e)+—+———+g=
Ogr r5+8_1 r*5+€_1
§ T s
= (= + +1) >0,
j=rrattem rztt g
as
. 7. plt2e | |2
1 : + 3 - +1=— 1] = 0.
ret—m, ozt —g; (rz** —m)(rz* — 7))

Now, from the theorem we get that
N
fP.s .
fgl eI <g+0( 5 )+o0r™.

We divide by g and first let g — » (varying K), after that we let N — oo
and finally we take the limit when ¢ — 0. In doing so we obtain the basic
inequality from [14]:

Z
=1 rz - 1
Remark 2.3. Using the explicit formulae due to Lachaud and Ts-
fasman, one can deal with the case of asymptotically good families of
smooth projective absolutely irreducible algebraic varieties over finite
fields.

3. Proof of Theorem 1.2

Our starting point will be the Weil explicit formula, the proof of
which can be found in [10] or in [7, Ch. XVII] (with slightly more general
conditions on the test functions).

Consider the class (W) of even real valued functions, satisfying the
following conditions:
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[

1
1) there exists £ > 0 such that JF (x)e(5+€)x dx is convergent in the

0
sense of Cauchy;

2) there exists € > 0 such that F (x)e(%ﬂ)x has bounded variation;

3) w has bounded variation;
F(x—0)+F(x+0)

4) for any x we have F(x) =
For such a function F we define

“+ o0
b(s) = J F(0)et— 8% du. G

The Weil explicit formula for Dedekind zeta functions of number
fields can be stated as follows:

Theorem 3.1 (Weil). Let K be a number field. Let F belong to the class
(W) and let ¢ (s) be defined by (3.1). Then the sum Z ¢ (p), where p

|Imp|<T
runs through the non-trivial zeroes of the Dedekind zeta function of K, is

convergent when T — « and the limit Y. ¢ (p) is given by:
o)

qu(p) F(O)(Zg n(y+log8m)— r12 +4JF(x)ch(§)

F(0)—F(x) F(0)—F(x) log Np
i J 2¢h(®) dx+n J 2sh(¥) dx _2§1 Np? F(mlogNp), (3.2)

Where the last sum is taken over all prime ideals p in K and all integers
mz=1.

First of all, we remark that, if we have a complex valued function
F(x) with both real and imaginary parts F,(x) and F; (x) being even and
lying in (W), we can apply (3.2) separately to F,(x) and F; (x). Thus the
explicit formula, being linear in the test function, is also applicable to the
initial complex valued function F(x).

We apply the explicit formula to the function defined by

e~ if |x| < log(N + %),
FN,E(x) = 1
0 if |x| > log(N + 3)

(here N + % is take to avoid counting some of the terms with the factor %).
Next, we estimate each of the terms in (3.2).
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3.1. The sum over the primes.

log Np log Np
Fy.(mlogNp) = 3. o
Npm<N NplzTem

m
2

p,m
logN:
=3 - FlogNp ¥ ——.
Np<N Np2™° =1 Np=n L Np(a+edm

logNp

We have to estimate the sum:

1
A(N,e) = D) logNp > —=——.
Np<N > Jog. Np(E“)W
logNp
Taking the absolute values, we can assume that ¢ is real. Calculating
the remainder term of the geometric series, we get:
logN
AN, &) < 2+V2) 3 o8

Np<N Np(%ﬂ)([ oy [+1)

(for (1 —Np~/279) 1< (1 -2"Y)"1<v/2(1+vV2)).

Let us split the sum into two parts according as whether Np > +/N or
not. Taking into account that logNp[log N/logNp] = log N — log Np for
log Np < [log 4/Np], we obtain:

log Np log Np
A(N,€)$(2+~/§)( 2. oenGe T 2 Np(1+25))'

Np<vN € VN<Np<N
Write
log Np log Np
AN, &)= D, NG+ Dy(N, &)= 3, NpO72e)°

Np<vN € VN<Np<N

For A;(N, €) we have:
A(N,e) < —11 > logNp.
Nz \o<vR
The last sum can be estimated with the help of Lagarias and Odlyzko
results (which use GRH, cf. [6, Theorem 9.1]):
> logNp< > logNp= VN +O(N7 logN (g +nlogN))
Np<vN Npk<v/N

with an effectively computable absolute constant in O. Thus we get:

2++/2 glogN +nlog*N
+Clo .

<
AI(N,&‘)\ N¢ N%Jrg



3. Proof of Theorem 1.2 109

We can estimate the sum A, (N, ¢) as follows:

OO logt
Ay(N,e) < j tles dr(t),
VN

where 7(t) is the prime counting function 7t (t) = Z 1. As before, ac-
Np<t

t

cording to Lagarias and Odlyzko, 7t (t) = Toax gx + 6(t), with [6(t)] <
2

<a;/t(g+n log t). Thus, substituting, we get'

logN —(1+2¢)logt

AN, &) sj C e 25D
VN
We deduce that

A,(N, ) <

2N‘g

[1—(142¢) logt|
t3+2

+ j a;(g+nlogt)
VN
For N > 8 we have:

[ asts niog L= g ¢ [ g, niogy E22EL g,

VN VN
Integrating by parts, we can find that

1-— (1+28)logt|

£7+2e 2(%+25)N%+5 (%+2s)2N%+f’

JO‘O logt . log N 1

VN
and

= + .

342¢ 1 1 1 2.1 1 3.1

t +2 = +e 1 +e = +e

e 45 +2¢)N% 2(5+2¢) N5 (F+2¢) N3
We conclude that the following estimate holds:

1 nlogzN glogN
<
22N, &) S 5op +a2( Nire T N )

Putting everything together we see that:

j‘o log®t log> N log N 1

AN, &)| <

log N
N€0 + i (nlogN +g). (3.3)
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3.2. Archimedean terms
First of all,
log(N+%)

ZfFN,E(x) ch(%)dx =2 j e & ch(%)dx =
0 0

N+ 1)
:( *3) +0(D). (3.4)

Let

(1= Fy. () (1
IN,E = T(;_)dx and Im’g = j X dx.
0

We have for N >4:

e~ Iyl sloé[N Sax< L
Now,
Lo = f(1e—:—x B 617(—%::) x=
0
oo -3 —x —x - +ox
= OJ((l‘in - )+ (- ) ax=v(5+¢)-v(3)
as

TR S
0

The second integral

0

1—Fy.(x)
JN,e = JT(;—) dx

can be estimated along the same lines using an integral from [1,
3.541]:

N ™

J;{g) dx=y(3+5) (5 +
0



3. Proof of Theorem 1.2 111

Taking into account that v (2x) = %(w )+ Q,b(x + %)) +log2, we
finally obtain:
Ine = %+log2+w(%+%)—w(%+e)+o(\%ﬁ),
(3.5
Iy, = y+log4+¢(% +8)+O(\/LN).

3.3. The sum over the zeroes: the main term

Let us estimate now the sum Z ¢ (p) over zeroes of {(s). Let p =

. o . .. .
= % + it be a zero of the zeta function of K on the critical line. Put

y= log(N + %) We have

y y y
¢(p) — J e—s\x|+itx dx = J‘e(—ﬁ—it)x dX+ e(—s—it)x d.X',
~y 0 0
o)
2 _ .
¢ (p) = i (e +e™ (=& cos(ty) + tsin(ey))).
We divide the sum over p into three parts:
—_— 8 .
Si(e) = p;l:ﬂt g2 +t2’
=2
. cos(ty)'
SZ(y7 8) - p_Z-Ht €2+t2 )
=2
S.(y.€) = Z tsin(ty)-
3 Y, _p71+it 82+t2 )
=2
so that

> p(p) =251(e) —2ee™ S, (y, €) + 2~ S5(y, €).
P

Let us relate the sum S;(¢) to Zg(s), the logarithmic derivative of
{x (s). Stark’s formula (cf. [13, (9)]) gives us the following:

1 _

= 1 g-Dlogm+ 2yp(2) + ) —log2) +Zc(s), (3.6)
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where as before ¢ (s) = l;“T(;)) Specializing at s = % + &, we obtain:
€ 1 1 n
> = + +g—5logm—r,log2+
2 2 1 1
p=ltit © TEe-y ety 2

r 1 e 1 1
+2p(z+5)+ru(z+e)+2(3+e) G
We note that the archimedean factors from the Stark formula and

from the initial Weil explicit formula cancel each other. We are left to
prove that S,(y, €) and S;(y, €) are sufficiently small.

3.4. The sum over the zeroes: the remainder term.

To estimate

Z cos(ty)

— 2412
p=§+lt

Sy(y,e) =

we take the absolute values of all the terms in the sum so that

1S, (v, &) < D] L _< > 9 (3.8)

2 2] S 2 _ 2
p:§+it|8 + P:%+it80+(t lexD

where n(j) is the number of zeroes with |t — j| < 1. A standard estimate
from [6, Lemma 5.4] yields n(j) < g+nlog(j +2), thus

|52(J’: €)| <

+nl +2 led 41 og
< Stnloglal+d) | oIS 108F ol +2) <
&5 o} le;|+2—]
2 1
< (g+nlog (|81|+2))(1+8—2).
0
Let us finally estimate
. tsin(ty)
S3(y,€e) = 21: R
p=§+u
We have
sint &2 sin(ty)
Sy = X T 3 LU A -BO, 6.
— .t T . te*+1t%)
p=5+lt p=5+lt

The series for the formal derivative of B(y, ¢) with respect to y is
given by
g2 cos(ty)
Z Pl

~ 242
p=y+it
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Using the estimates for S, (y, €) we deduce that on any compact sub-
set of [0, +) this series is absolutely and uniformly convergent to B’ (y),
and we have |B'(y, &)| < |e|?(g +nlog*(|e;| + 2))(1 + é) Thus we see

0

that |B(y)| < yle|*(g+nlog®(le;] +2))(1+ é), since B(0, ¢) =0.
0

3.5. The sum over the zeroes: the difficult part

We are left to estimate the term A(y).
Let us recall a particular case of Weil explicit formula which is due
to Landau (cf. [8]):

Z %p =x—Y(x)—rlogx—b— r2_1 log(1 —x%) - r,log(1 —x Y, 3.9
o)

where ¥(x) = > logNp, b is the constant term of the expansion of
Npk<x
Zg(s) at 0, r=r +r,—1 and x is not a prime power. This formula is

stated in [8] for x> %, however, applying Theorem 3.1 to the function

yl/2
e if |y| < logx,
F.(y) = ]

0 if |y| > logx,

one can see that it is valid for any x > 1. We also note that by an effec-
tive version of the prime ideals theorem ([6, Theorem 9.1]) we have the
following estimate:

U(x)—x= O(x% logx(g—l—nlogx)). (3.10)

Now, we introduce

coo=3%<

e, D= S X and E(x) =D(x) - C().
P

1
p#3 P~ 5
From (3.9) and (3.10) we see that C(x) is an integrable function on com-
pact subsets of (1, +). Using the arguments similar to those from the
previous subsection we can deduce that the series for E(x) is absolutely
and uniformly convergent on compact subsets of [1, +«) and thus E(x)
is a continuous function on this interval. From this we conclude that the
series for D(x) is also convergent to a locally integrable function.

If we put x =e”, we get

ReD(e”) =3 > Singty),

p#3
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which is equal to egA(y) up to a term corresponding to a possible zero

of {y(s)atp=7

Since the series for C(x) is not uniformly convergent, we will have
to work with distributions defined by C(x), D(x) and E(x). See [11] for
the basic notions and results used here. From the fact that a convergent
series of distributions can be differentiated term by term we deduce that
the following equality holds:

4E® _ CW
e W

We apply (3.9) to the right hand side of this formula and integrate
from 1+ 6 to x (here 6 > 0). The obtained equality will be valid in
the sense of distributions, thus almost everywhere for the corresponding
locally integrable functions defining these distributions. Since E(x) is
continuous, we see that the resulting identity

logt
EW _pa+s)+ j ‘””d j 081 4¢
x 23
1+6 1+6
c b ro ¢ log(1—t2) ¢ log(1—t)
— | a2 28 —rzjg—édt
1+6 2t2 1+6 2t2 1+6 2t2

actually holds pointwise on [14 &, +). We use (3.10) to estimate t —
— W(t). It is easily seen that all the integrals converge when § — 0. From
[8, 10.RH] it follows that b < g +n.
1 1
E=3 - b-Ri=) 3

l 1,2
p#3 2 o= +1t4+t

the first sum being zero as the term in p and 1 — p cancel each other. An
estimate for the last sum can be made using (3.8). This gives |E(1)| <
< g+ n. Putting it all together we see that |E (x)|< v/x log? x(g+nlogx).
The estimate |C(x)| < /X logzx(n + g) can be obtained directly using
(3.10). Thus, we conclude that |[A(y)| < y?(g +ny).

Finally, combining all together we get:

(letel +|s|(ng log)

gN)

2 p(p) =2S1(e)+0 N
P

This estimate together with (3.3), (3.4), (3.5) and (3.7) completes
the proof of the theorem. O
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Remark 3.2. Using our theorem we can derive the basic inequality
from [16]. Indeed, we apply the formula (3.7) to express Z K(% + e) via
the series Y. sZL—HZ plus some archimedean terms. For a real positive

p=1+it

1 . .
£<y the latter sum is non-negative, thus we see that

> qslqlogql+%logn+rzlog2— 1/)( ) T'Zl,l)( )$

q<N q2*° —
g—i—O((g-i—nlogN) )—i—O(w/_)

Now, we divide by g and first let g — « (varying K), after that we
let N — o and finally we take the limit when ¢ — 0. Taking into account
that

¢(%):—y—210g2 and w(%):—g—y—?ﬂogz,

we obtain the basic inequality from [14]:

Z¢q gq-i-qu(log(Z«/_)-i- +5 )+¢c(108(8”)+}/)$1

Remark 3.3. The choice of the test functions Fy . (x) in the explicit
formula is not accidental. Indeed, the resulting formulas “approximate”
the Stark formula (3.6) when N — o,

4. Proof of Theorem 1.4 and of the corollaries

We will carry out the proofs in the function field case, the calcula-
tions in the number field case being exactly the same.

Proof of the Corollary 1.3. Assume first that 875 +1
We note that

ank ,keZ.

o fous 1 1
= <
fgl e 4 g}-longKj(2+8) =
e
o f¢rf fg—j oms
> + A+
F=N+1 r( +e)f _ = 3l g
N
[
+l j_rf Lz (1+¢).
& 1/3 r(§+s)f_1 logr =%\ 2
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Given 6 > 0 we choose an integer N such that the first sum is
less than 5 (this is possible due to the basic inequality) and such that

(1 + = ) < 6. Now, taking g sufficiently large, and using Theorem 1.1

rsoN
b, s
as well as the convergence of g—r to ¢,s, we conclude that the whole sum
j
is € 6. Thus, we deduce that

Zy. l—}—s
j_r)rolo M = Z{Kj}(% +8). 4.1

Now, the corollary immediately follows from Theorem 1.1 and (4.1).

Though we initially assumed that ¢ 75 + %mk the statement still holds
fore== + %mk as all the function are continuous (and even analytic)
for Ree >0. O

Remark 4.1. The formula (4.1) no longer holds when ¢ =0 as can be
seen from the fact that Z K(%) =gx — 1. In fact, the identity holds if and

only if our family is asymptotically optimal. Whether it holds or not for
the logarithm of { (s) and not for its derivative seems to be very difficult
to say at the moment. Even for quadratic fields this question is far from
being obvious. It is known that in the number field case there exists a

sequence (d;) in N of density at least % such that

1
. logCQq/d_i)(E)
lim ~ogd 0
i ogd,;
(cf. [3]). The techniques of the evaluation of mollified moments of Dirich-
let L- functions used in that paper is rather involved. In general one can
prove an upper bound for the limit (cf. [17]). This is analogous to the

“easy” inequality in the classical Brauer—Siegel theorem.
The interest of the question about the behaviour of log Z K(%) can be

in particular explained by its connection to the behaviour of the order of
the Shafarevich—Tate group and the regulator of constant supersingular
elliptic curves over function fields, the connection being provided by the
Birch and Swinnerton-Dyer conjecture. In general, a similar question can
be asked about the behaviour of these invariants in arbitrary families of
elliptic curves. Some discussion on the problem is given in [4] (beware,
however, that the proof of the main result there cannot be seen as a
correct one as the change of limits, which is a key point, is not justified).
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Proof of Theorem 1.4. It follows from the basic inequality that

the series defining log{x,(s) converges absolutely for Res > % The

function log{x,(s) has a Dirichlet series expansion with positive co-
.. . 1

efficients, converging for Res > 5. Thus, from a standard theorem on

Dirichlet series (cf. [2, Lemma 5.56]), it must converge in some open

domain Res > = — o, for 6, > 0, defining an analytic function there. It
follows that in the same domain the series for Z  , (s) converges. Taking
any 6 with 0 < 6 < 6, we obtain:

0

% Sfo 1 ()‘_ 5 [ .r(i’é)f—l

<
{K:} ‘ =
f=1 ré—l IOgr f=N+1 r( 5)f—1 ré—l
i f9u | o)
1-6)f 3_ ’
f=1 rl -1 rz —1
This gives the necessary result. O

Proof of the Corollary 1.5. We use Theorem 1.4 to obtain the nec-
essary estimate much in the same spirit as in the proof of Theorem 1.4
itself. Using the function field Brauer—Siegel theorem to find the value
for k, we get:

N I‘f
f§1 ¢slog /-1

f
S r/
—K'= > . -log '$
i1 S -1
'r%_1~lo rN
N &N _

le

i fé

: =00 o
f=N+1r2 —1

<

Indeed, N — %(r% —1)log rNri 1 is decreasing for N > 2. The required
estimate follows. O

Remark 4.2. Actually, our method gives an easy and conceptual
proof of the explicit version of the Brauer—Siegel theorem from [9]
(which is roughly speaking the statement of Corollary 1.5 with 6 =0).
It shows that the rate of convergence in the Brauer—Siegel theorem
essentially depends on how far to the left the limit zeta function { , (s)

is analytic. In the number field case we even save log> N in the estimate
of the error term compared to what is proven in [9].
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Asymptotic methods in number theory
and algebraic geometry

(with P. Lebacque)

Abstract. The paper is a survey of recent developments in the
asymptotic theory of global fields and varieties over them. First, we give
a detailed motivated introduction to the asymptotic theory of global
fields which is already well shaped as a subject. Second, we treat in a
more sketchy way the higher dimensional theory where much less is
known and many new research directions are available.

Résumé. Cet article est un survol des développements récents dans
la théorie asymptotique des corps globaux et des variétés algébriques
définies sur les corps globaux. Dans un premier temps, nous donnons
une introduction détaillée et motivée a la théorie asymptotique des corps
globaux, théorie déja bien établie. Puis nous aborderons plus rapidement
la théorie asymptotique en dimension supérieure ou peu de choses sont
connues et ou bien des directions de recherche sont ouvertes.

1. Introduction: the origin of the asymptotic theory
of global fields

The goal of this article is to give a survey of asymptotic methods in
number theory and algebraic geometry developed in the last decades.
The problems that are treated by the asymptotic theory of global fields
(that is number fields or function fields) and varieties over them are
quite diverse in nature. However, they are connected by the use of zeta
functions, which play the key role in the asymptotic theory.

We begin by a very well known problem which lies at the origin of
the asymptotic theory of global fields. Let I, be the finite field with r
elements. For a smooth projective curve C over F, we let N.(C) be the
number of IF,-point on C. We denote by g(C) be the genus of C. The prob-
lem consists of finding the maximum N, (g) of the numbers N, (C) over
all smooth projective curves of genus g over IF,.: N,.(g) = max,c)—, N, (C).

Philippe Lebacque, Alexey Zykin, Asymptotic methods in number theory and algebraic
geometry, Actes de la Conférence “Théorie des Nombres et Applications” in: Mathemati-
cal Publications of Besangn, Algebra and Number Theory, Presses Univ. Franche-Comté,
Besanon, 2011, 47—73.
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The first upper bound was discovered by André Weil in 1940s as a
direct consequence of his proof of the Riemann hypothesis for curves
over finite fields. He showed that N,.(C) satisfies the inequality

N,(C) <r+1+2gVT.

Weil bound though extremely useful in many applications is far from
being optimal. A dramatic search for the improvements of this bound
and for the examples giving lower bounds on N,.(g) has begun in 1980s
with the discovery of Goppa that curves over finite fields with many
points can be used to construct good error-correcting codes. To show how
important the developments in this area were it suffices to mention the
names of some mathematicians who turned their attention to these ques-
tions: J.-P. Serre, V. Drinfeld, Y.Ihara, H. Stark, R. Schoof, M. Tsfasman,
S.Vladut, G. van der Geer, K. Lauter, H. Stichtenoth, A. Garcia, etc.

As suggested in [33] by J.-P.Serre the cases when g is small and
that when g is large require completely different treatment. That is the
latter case which interests us in this article. The first major result in this
direction was the following theorem of V. Drinfeld and S. Vladut [5]:

Theorem 1.1 (Drinfeld—Vladut). For any family of smooth projective

curves {C;} over F, of growing genus we have limsup;_,., ]Zr((cil) <Vr—1.

Moreover, in the case, when r is a square this bound turns out to be
optimal. The families of curves, attaining this bound are constructed in
many different ways: modular curves, Drinfeld modular curves, explicit it-
erated constructions, etc. We refer the reader to Section 4 for more details.
This result, significantly improved and then reinterpreted in terms of limit
zeta functions by M. Tsfasman and S. VIadut, lies at the very base of the
asymptotic theory of global fields. We will discuss all this in detail in
Section 2. It is also possible to extend the Drinfeld—Vladut inequalities
to the case of higher dimensional varieties. This serves as a keystone in the
construction of the higher dimensional asymptotic theory (see Section 5).

We will now turn our attention to yet another source of development
of the asymptotic theory, this time in the case of number fields. Let K be
an algebraic number field, that is a finite extension of ). We denote by
ng =[K : Q] its degree, and by Dy its discriminant. An important question
(both on its own account and due to its applications in various domains of
number theory, arithmetic geometry and theory of sphere packings) is to
know the rate of grows of discriminants of number fields. The first bound
on Dy was obtained by H. Minkowsky using the geometry of numbers. This
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bound was improved more than half a century later by H. Stark, J.-P. Serre
and A. Odlyzko ([35], [32], [29], [30]) who used analytic methods in-
volving zeta functions. The bounds they prove are as follows:

Theorem 1.2 (Odlyzko). For a family of number fields {K;} we have

log|Dy | = A-ry(K;) + 2B -1, (K;) +o(ng),

where 11 (K;) and r,(K;) are respectively the number of real and complex
places of K;. Unconditionally, we can take A =log(4m) + vy + 1~ 60.8,
B=log(4m) +y~22.3, and, assuming the generalized Riemann Hypothe-
sis (GRH), one can take, A=1log(8m) + v+ % ~215.3, B=1og(8m) +y~
~44.7, where y =0.577 is Euler’s gamma constant.

The fact that GRH drastically improves the results is omnipresent in
the asymptotic theory of global fields. Fortunately, GRH is known for zeta
functions of curves over finite fields (Weil bounds) and, more generally, of
varieties over finite fields (Deligne’s theorem), which allows to have both
stronger results and simpler proofs in the case of positive characteristic.

M. Tsfasman and S.Vladut managed to generalize the above inequal-
ities taking into account the contribution of finite places of the fields. In
fact, the restriction of the so-called basic inequality proven by M. Tsfasman
and S.Vladut to infinite primes gives us the inequalities of Odlyzko—
Serre. If we restrict the basic inequality to finite places we obtain an
analogue of the generalized Drinfeld—Vlddut inequality in the case of
number fields. The reader will find more information on this in the next
section of the paper.

The last, but not least, problem that led to the development of the
asymptotic theory of global fields and varieties over them was the Brauer—
Siegel theorem. Let hy denote the class number of a number field K and
let Ry be its regulator. The classical Brauer—Siegel theorem, proven by
Siegel ([34]) in the case of quadratic fields and by Brauer ([3]) in gen-
eral describes the behaviour of the product hg Ry in families of number
fields. The initial motivation for it was a conjecture of Gauss on imag-
inary quadratic fields, however it has got many important applications
elsewhere. The theorem can be stated as follows:

Theorem 1.3 (Brauer—Siegel). For a family of number fields {K;} we

. log(hgRy)
have lim

i— log 4/ Dy

@) lim -

=1 provided the family satisfies two conditions:

L0,

iI—®© SK:

(ii) eitherl GRH holds, or all the fields K; are normal over Q.
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It is possible to remove the first and relax the second conditions of
the theorem. The first step towards it was made by Y. Ihara in [13] who
considered families of unramified number fields. A complete answer (at
least modulo GRH) was given by M. Tsfasman and S. Vladut in [40] who
showed how to treat this problem in the framework of the asymptotic
theory of number fields, in particular using the concept of limit zeta func-
tions. The corresponding question for curves over finite fields is also of
great interest since it describes the asymptotic behaviour of the number
of rational points on Jacobians of curves over finite fields. All this will be
discussed in detail in the Section 3.

In our introduction we mostly considered the one dimensional case of
number fields or function fields. Here the theory is best developed. How-
ever, there is quite a number of results and conjectures for higher dimen-
sional varieties with particularly nice arithmetical applications. Some of
the results in this actively developing area are discussed in Section 5.

Let us finally say that, despite of the fact that the theory of error
correcting codes and the theory of sphere packings are just briefly men-
tioned in our introduction their role in the creation of the asymptotic
theory of global fields is fundamental. Indeed many questions some
of which were mentioned here (maximal number of points on curves,
growth of the discriminants, etc.) received particular attention due to
their relation to error-correcting codes or sphere packings.

2. Basic concepts and results. Tsfasman—Vlddut invariants
of infinite global fields

Many authors considered the behaviour of arithmetic data (decom-
position of primes, genus, root discriminant, class number, regulator
etc.) in families of global fields. Tsfasman and Vladut laid the founda-
tion for the asymptotic theory of global fields in order not to consider
fields in a family, but the limit object (say, a limit zeta function) that
would encode the information concerning the asymptotics of the initial
arithmetic data.

In this section we introduce some definitions and give basic proper-
ties of families of global fields.

2.1. Tsfasman—Vlddut invariants
Arguments and proofs for the results from this subsection can be
found in [40]. Let us first define t_he objects we are to work with. Let
r be a power of a prime p, and let F, denote the algebraic closure of F,..
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Definition 2.1. A family of global fields is a sequence % ={K,,},en
such that:

1) Either all the K,, are finite extensions of QQ or all the K,, are finite
extensions of I, (t) with F, NK, =F,.

2) if i #j, K; is not isomorphic to K;.

A tower of global fields is a family satisfying in addition K,, C K,
for every n €N. An infinite global (resp. number, resp. function) field is
the limit of a tower of global (resp. number, resp. function) fields, i. e. it
is the union [ J K,,.

n=1

Definition 2.2. The genus g of a function field is the genus of the
corresponding smooth projective curve. We define the genus of a number
field K as gg =log +/|Dg|, where Dy is the discriminant of K.

As there are (up to an isomorphism) only finitely many global fields
with genus smaller than a fixed real number g, we have the following
proposition.

Proposition 2.3. For any family {K;} of global fields the genus gx, —
— 400,

Thus, in the number fields case, any infinite algebraic extension of Q
is an infinite number field, whereas in the function fields case, we require
the infinite algebraic extension of FF,.(t) to contain a sequence of function
fields with genus going to infinity.

Let us now define the so-called Tsfasman—Vladut invariants of a
family of global fields. Throughout the paper, we use the acronyms NF
and FF for the number field and the function field cases respectively.
As before, the GRH indication means that we assume the generalized
Riemann Hypothesis for Dedekind zeta functions.

First we introduce some notation to be used throughout the paper:

2 the field Q (NF), F,.(t) (FF);

ng [K:QlI;

Dy discriminant of K (NF);

x the genus of K (FF), the genus of K equal to log +/|Dx| (NF);
Pl;(K) the set of finite places of K;

Np the norm of a place p € Pl (K);

degp log.Np (FF);

$,(K) the number of places of K of norm q;

&R (K) the number of real places of K (NF);

&-(K) the number of complex places of K (NF).
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We consider the set of possible indices for the &,

{R, C, pk | p prime, k € Z.,}, (NF)
A=
{r* |k € Z.o} (FF)

and Ay its subset of finite parameters

{pk | p prime, k € Z>0}.

Definition 2.4. We say that a family ¢ = {K;} of global fields is
asymptotically exact if the following limit exists for any q € A:

&, (K)

i—»+o 8k

b =

It is said to be asymptotically good if in addition one of the ¢, is nonzero,
and asymptotically bad otherwise. The numbers ¢, are called the Tsfas-
man—Vl]adut invariants of the family ¢

This definition has two origins. The first one is the information the-
ory since the families giving good algebraic geometric codes are those
for which ¢, exists and is big. The second one is more technical and can
be seen through Weil’s explicit formulae. For convenience we also put

. g
¢oo = hmg == ¢R+2¢C

i

Being asymptotically exact is not a restrictive condition. To be pre-
cise:

Proposition 2.5. 1) Any family of global fields contains an asymptot-
ically exact subfamily.

2) Any tower of global fields is asymptotically exact and the ¢ ’s de-
pend only on the limit.

We can thus define the Tsfasman—Vladut invariants of an infinite
global fields ¢ as the invariants of any tower having limit .. From now
on, we only consider asymptotically exact families, since they provide
natural framework for asymptotic considerations. One of the problems
of the asymptotic theory is to understand the set of possible {¢}. In the
next propositions we describe some the general properties of the {¢}.
Let us start with the basic inequalities:
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Theorem 2.6 (Tsfasman—Vladut). For any asymptotically exact fam-
ily of global fields, the following inequalities hold:

¢qlogg Y
Je-1 +(log V87 + 5 + 5+ (log8m+ e < 1,

lo
¢qq_g1q +(log2ﬁ+§)¢R+(log2ﬂ:+Y)¢C <1,

(NF —GRH) 3,
q

(NF) >,
q

0

FF) 3 ’Z“’r"ll <1,

m=112% —

where v is the Euler constant.

This result is central in what follows. For instance, it is used to show
the convergence of the limit zeta function associated to the family. It is
proven using the Weil explicit formulae, the effective Chebotarev den-
sity theorem for number fields and the Riemann hypothesis for function
fields.

In the case of towers of number fields (and of function fields if we
consider suitable quantities), the degree of the extension gives an upper
bound for the number of places above a prime number p:

Proposition 2.7. For an asymptotically exact family of number fields
and any prime number p the following inequality holds:

+ o0

Zl meo,m < Pr+2¢c.
Let us finally define the deficiency &, of an asymptotically exact
family ¢ ={K;} of global fields as the difference between the two sides
of the basic inequalities under GRH:

¢, logq
(NF) &6,=1->, ;q—l —(logx/8n+%+§)¢R—(log8n+y)¢c
q
and
(FF) 6,=1- Z Tﬁ(j)rm .
m=172—1

A remarkable fact is that the deficiency of infinite global fields is in-
creasing with respect to the inclusion (see [25]): # C £ implies &, <J o .
One knows that fields of zero deficiency exist in the function fields case
(c.f. Section 4). Such infinite global fields are called optimal, and they
are of particular interest for the information theory.
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2.2. Ramification, prime decomposition and invariants

The precise statements and proofs of the results from this subsection
can be found in [7] and [25]. The Tsfasman—Vl&dut invariants of infinite
global fields contain information on the ramification and the decom-
position of places in these fields. Indeed, one sees from Hurwitz genus
formula that any finitely ramified and tamely ramified tower of number
fields is asymptotically good (because it has bounded root discriminant).
For function fields, we have to ask in addition for the existence of a split
place. It is not excluded that there exists an asymptotically good infi-
nite global field with infinitely many ramified places and no split place,
but no examples have been found so far. In the case of function fields,
A. Garcia and H. Stichtenoth provided a widely ramified optimal tower
and an everywhere ramified tower of function fields with bounded g/n
is constructed in [4]. Unfortunately, we do not know anything similar for
number fields.

In general, we expect asymptotically good towers to have very lit-
tle ramification and some split places. The next question, first raised by
Y. Ihara, is how many places split completely in a tower %" of global field.
It follows from the Chebotarev density theorem that the set of completely
split places has in general a zero analytic density, that is

2 Np~*
D
lim ———— =0,
s—1F Z Np~*
pePl(2)

where D is the set of places of & that split completely in -#'/£. In the

case of asymptotically good fields, > Np~! is even bounded. However, in
peD

the case of asymptotically bad fields, the numerator can have an infinite
limit whereas the ramification locus is very small (but infinite). We refer
the reader to [25] for a more detailed treatment of the above questions.

3. Generalized Brauer—Siegel theorem and limit zeta functions

3.1. Generalizations of the Brauer—Siegel theorem

Now we turn our attention to the Brauer—Siegel theorem. The in-
depth study of mathematical tools involved in it leads to an important
notion of limit zeta functions which plays a key role in the study of
asymptotic problems.

While looking at the statement of the Brauer—Siegel theorem (The-
orem 1.1) one immediately asks a question whether the two conditions
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present in it are indeed necessary. It is a right guess that the second
condition involving normality is technical in its nature (though getting
rid of it would be a breakthrough in the analytic number theory since it
is related to the so-called Siegel zeroes of zeta functions — the real zeroes
which lie abnormally close to s = 1; of course, presumably they do not ex-
ist). The second condition ng/log +/|Dx| — 0 looks much trickier. Using
the inequalities from Proposition 2.7 it is immediate that this condition is
equivalent to the fact that the family we consider is asymptotically bad.

A fundamental theorem of M. Tsfasman and S. Vladut from [40] al-
lows both to treat the asymptotically good case of the Brauer—Siegel
theorem and to relax the second condition. We formulate it together
with a complementary result by A. Zykin [45] which relaxes the second
condition in the asymptotically bad case. Before stating the result we give
the following definition:

Definition 3.1. We say that a number field K is almost normal if
there exists a tower

K:KHD"'DKIDKO:Q,

where each step K;/K;_; is normal.

Theorem 3.2 (Tsfasman—Vladut—Zykin). Assume that for an asymp-
totically exact family of number fields {K;} either GRH holds or all the fields
K; are almost normal. Then we have:

log(hy,Ry,)
m —— &2
8k

i—®© i

q
= 1+quqlogq_1 — ¢prlog2— ¢clog2m,
q

the sum being taken over all prime powers q.

For an asymptotically bad family of number fields we have ¢ =0
and ¢ =0 as well as ¢, =0 for all prime powers g, so the conclu-
sion of the theorem takes the form of that of the classical Brauer—
Siegel theorem. However, there are examples of families of number
fields where the right hand side of the equality in the theorem is ei-
ther strictly less or strictly greater than one (see [40]). Let us men-
tion one particularly nice corollary of the generalized Brauer—Siegel
theorem due to M. Tsfasman and S.Vlddut: a bound on the regulators
that improves Zimmert’s bound (see [44], his bound can be written as

logR,.
5> (log2+ 1) pp+2r¢e).

Theorem 3.3 (Tsfasman—Vladut). For a family of almost normal
number fields {K;} (or any number fields under the assumption of GRH)

liminf
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we have

log Ry,

liminf . > (logvVre+7y/2)¢pr + (log2+7) Pe.

The proof of this bound is far from being trivial, it can be found in [40].

The function field version of the Brauer—Siegel theorem is both eas-
ier to prove and requires no supplementary conditions (like normality
or GRH). In fact, it was obtained before the corresponding theorem for
number fields and allowed to guess what the result for number fields
should be (for a proof see [36] or [39]).

Theorem 3.4 (Tsfasman—Vladut). For an asymptotically exact fam-

ily of smooth projective curves {X;} over a finite field F, we have:

. logh; _ z rf
lim o —logr+z¢rflogm,

i— i f=1

where h; = h(X;) =|(JacX;)(F,)| is the cardinality of the Jacobian of X;
over IF,.
Let xx =Res,_; {x(s) be the residue of the Dedekind zeta function
L) =] — g% of the field K at s= 1. Using the residue for-
q

mula (see [5, Chapter VIII] and [9, Chapter III])

Z‘PR(K) (27-5)<Pc(K)hKRK
X = (NF case);
wy v/ | Dl
h g
K (FF case)

= G D logr

(here wy is the number of roots of unity in K) one can see that the
question about the behaviour of the ratio from the Brauer—Siegel the-
orem is reduced to the corresponding question for x. To put it into a
more general framework, we first seek an interpretation of the arithmetic
quantities we would like to study in terms of special values of certain zeta
functions, then we study the behaviour of these special values in families
using analytic methods. We will see in Section 5 another applications
of this principle. One also notices that this reduction step explains the
appearance of the GRH in the statement of the Brauer—Siegel theorem.
Let us formulate yet another version of the generalized Brauer—
Siegel theorem proven by Lebacque in [23, Theorem 7]. It has the ad-
vantage of being explicit with respect to the error terms, thus giving
information about the Brauer—Siegel ratio on the “finite level”.
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Theorem 3.5 (Lebacque). Let K be a global field. Then
(i) in the function field case

rf
log(xy logr) = Z ®,slog 7 —logN — y+O(N N/2)+O( )
(i) in the number ﬁeld case assuming GRH

logx; = q;{@ log —— —loglogx —y+ O(TIKI%) + O(%),

where y=0.577... is the Euler constant. The constants in O are abso-
lute and effectively computable (and, in fact, not very big).

This theorem can also be regarded as a generalization of the Mertens
theorem (see [23]). A slight improvement of the error term (as before,
assuming GRH) was obtained in [26]. An unconditional number field
version of this result is also available but is a little more difficult to state
([23, Theorem 6]). We should also note that Lebacque’s approach leads
to a unified proof of the asymptotically bad and asymptotically good
cases of Theorem 3.2 with or without the assumption of GRH.

3.2. Limit zeta functions

For the moment the asymptotic theory of global fields looks like a
collection of similar but not directly related results. The situation is clar-
ified immensely by means of the introduction of limit zeta functions.

Definition 3.6. The limit zeta function of an asymptotically exact
family of global fields ¢ ={K;} is defined as

(@) =T —g™) 7%,
q

the product being taken over all prime powers in the number field case
and over prime powers of the form ¢ =r/ in the case of curves over F,.
The basic inequalities from Theorem 2.6 give the convergence of the

c 1 . .
above infinite product for Res > 5 with the assumption of GRH and for
Res = 1 without it (in particular, in the function field case the infinite

product converges for Res > %). In fact, the basic inequalities themselves
can be restated in terms of the values of limit zeta functions. To formulate
them we introduce the completed limit zeta function:

g’x(s) = 652_"5&n_s‘bﬂ/z(zm_s%r(%)%F(s)%{%(s) (NF case);
Cy(s) =1L (s) (FF case).
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Let 5 ()= f’ ()] 5 4 (s) be the logarithmic derivative of the com-
pleted limit zeta function. Then the basic inequalities from Section 2
take the following form:

Theorem 3.7 (Basic inequalities). For an asymptotically exact family

of global fields # = {K;} we have & x( )> 0 in the function field case

and assuming GRH in the number field case and 5 (1) = 0 without the
assumption of GRH.

Let us give an interesting interpretation of the deficiency in terms of
the distribution of zeroes of zeta functions on the critical line. In fact, the
results we are going to state are interesting on their own. To a global field

K we associate the counting measure AK == Z 8¢(p)> where t(p) =Imp
in the number field case and t(p) = — Irn p in the function case; the

sum is taken over all zeroes p of C X (s) in the number field case and
over all zeroes p of {y(s) with t(p) € (—, ] in the function field case
(in the case of function fields ¢k (s) is periodic with the period equal to
271/logr), &, is the Dirac (atomic) measure at t. Thus we get a mea-
sure on R in the number field case and on R/Z in the function field
case. The asymptotic behaviour of Ay was first considered by Lang [4]
in the asymptotically bad case. The following result is proven in [40,
Theorem 5.2] and [39, Theorem 2.1].

Theorem 3.8 (Tsfasman—Vladut). For an asymptotically exact fam-
ily of global fields # ={K;}, assuming GRH, the limit lim Ay exists in an

[—o0

appropriate space of measures (to be precise, in the space of measures of
slow growth on R in the NF case,and in the space of measures on R/Z in
the FF case). Moreover, the limit is a measure with continuous density

M (6) = Re& (3 +it).

Of course, the expression for M, (t) can be written explicitly using
the invariants ¢, . Let us note two important corollaries of the theorem.
First, we get an interpretation for the deficiency

5= £x(3) = M0

as the asymptotic number of zeroes of (. (s) accumulating at s = 1 sec
ond, the theorem shows that for any family of number fields zeroes of

. . . . 1 .
their zeta functions get arbitrarily close to s = 5 (and, in a sense, we even
know the rate at which zeroes of (i (s) approach to this point).
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3.3. Limit zeta functions and Brauer—Siegel type results

Let us turn our attention to the Brauer—Siegel type results. The for-
mulae from Theorems 3.2 and 3.4 can be rewritten as
log xy,

lim

[—o0

— = log ¢, (1).

Furthermore, using the absolute and uniform convergence of infinite
products for zeta functions for Res > 1, Tsfasman and Vlddut prove in
[40, Proposition 4.2] that for Res > 1 the equality

. logly.(s)
lim ————

[—o0

=logl,(s)

holds. In fact, this equality remains valid for Res <1 (at least if we as-

sume GRH in the number field case). The proof of the next theorem can

be found in [47] in the number field case and in [48] in the function field

case (where the same problem is treated in a broader context).
Theorem 3.9 (Zykin). For an asymptotically exact family of global

fields & ={K;} for Res > % we have
. log((s = 1)k, (5))
lim —

i—o K;

1 S— 1)
lim M =logl ,(s) (EF case).

i—o0 8k;

=1logl ., (s) (NF case assuming GRH);

The convergence is uniform on compact subsets of the half-plane {s |Res >
>}

The case s =1 of theorem 3.9 is equivalent to the Brauer—Siegel
theorem and current techniques does not allow to treat it in full gener-

ality without the assumption of GRH. Thus getting unconditional results
similar to Theorem 3.9 looks inaccessible at the moment. The analogue

of the above result for s = % is considerably weaker and one has only an
upper bound:
Theorem 3.10 (Zykin). Let py, be the first non-zero coefficient in the

Taylor series expansion of {k (s) at s = %, ie.

Ck ) = pr(s—3) " +o((s—3)"):

Then in the function field case or in the number field case assuming that
GRH is true, for any asymptotically exact family of global fields & ={K;}
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the following inequality holds:
log|pg,|

lim sup

{—o i

< logé’x(%).

The interest in the study of the asymptotic behaviour of zeta func-

tions at s = % is partly motivated by the corresponding problem for
L-functions of elliptic curves over global fields, where this value is related
to deep arithmetic invariants of the elliptic curves via the Birch—Swin-
nerton-Dyer conjecture. We refer the reader to Section 5 for more details.
The question whether the equality holds in Theorem 3.10 is rather deli-
cate. It is related to the so called low-lying zeroes of zeta functions, that
is the zeroes of {x(s) having small imaginary part compared to gi. It
might well happen that the equality

M zlog§x(%)

does not hold for all asymptotically exact families # = {K;} since the be-
haviour of low-lying zeroes is known to be rather random. Nevertheless,
it might hold for “most” families (whatever it might mean).

To illustrate how hard the problem may be, let us remark that Iwaniec
and Sarnak studied a similar question for the central values of L-functions
of Dirichlet characters [16] and modular forms [17]. They manage to
prove that there exists a positive proportion of Dirichlet characters (mod-
ular forms) for which the logarithm of the central value of the corre-
sponding L-functions divided by the logarithm of the analytic conductor
tends to zero. The techniques of the evaluation of mollified moments
used in these papers are rather involved. We also note that, to our knowl-
edge, there has been no investigation of low-lying zeroes of L-functions
of growing degree. It seems that the analogous problem in the function
field case has neither been very well studied.

Let us indicate that the corresponding question for the logarithmic
derivatives of zeta functions has a negative answer. Indeed, the func-

. o /2
tional equation implies that lh_{g (/D
fields K;. However, the logarithmic derivative of the limit zeta function

lim
[—® i

=1 for any family of function

Cy(s)ats= % equals one only for asymptotically optimal families (c.f.
Theorem 3.7).

As a corollary of Theorem 3.9 one can obtain a result on the asymp-
totic behaviour of Euler—Kronecker constants.
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Definition 3.11. The Euler—Kronecker constant of a global field K is

CC_Ol((KK))_’ where CK(S)=C—1(K)(5—1)_1+C0(K)+O(5_1)_

In [14] Y. Ihara made an extensive study of the Euler—Kronecker con-
stants of global fields, in particular, he obtained an asymptotic formula
for their behaviour in families of curves over finite fields. A complemen-
tary result in the number field setting was obtain in [47] as a corollary
of Theorem 3.9. In fact Theorem 3.9 gives that in asymptotically exact
families the coefficients of the Laurant series at s =1 of the logarithmic
derivatives C;(i (5)/C k. (s) tend to the corresponding coefficients of the
Laurant series expansion of the logarithmic derivative of the limit zeta
function. For zeroes coefficient this becomes:

Corollary 3.12 (Thara—Zykin). Assuming GRH in the number field
case and unconditionally in the function field case, for any asymptotically
exact family of global ﬁ'elds {K;} we have

defined as yx =

For the sake of completeness let us mention an explicit analogue of
Theorem 3.9 obtained in [26]:

Theorem 3.13 (Lebacque—Zykin). For any global field K, any integer
N =10 and any € = ¢, +1ie; such that ey =Re e >0 we have

(i) in the function field case:

% {4;; ; logr Z(3 +e)+$—o( (142 -))+o(r%);

(ii) and in the number field case assuming GRH:

)

qs<N q2

&, logq 1

+ZK( te)+—3=

+e

4 log?
:O(|8| +|8|(gK KlogN)—olsgoN)—i-O(w/ﬁ).

3.4. Some other topics related to limit zeta functions

Let us finally state some related results on the asymptotic properties
of the coefficients of zeta functions. For the moment they are only avail-
able in the function field case (see [39]). Let K/F,(t) be a function field

and let {x(s)= > D,,r~™ be the Dirichlet series expansion of the zeta
m=1
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function of K. One knows that D,, is equal to the number of effective
divisors of degree m on the corresponding curve. We have the following
results on the asymptotic behaviour of D,,:
Theorem 3.14 (Tsfasman—Vladut). For an asymptotically exact fam-
ily of function fields & ={K;} and any real u >0 we have
lim w = min(uslogq+1logl , (s)).
i—o 8k; sz1
Moreover, the minimum can be evaluated explicitly via ¢, (c.f. [39, Propo-
sition 4.1]).
Theorem 3.15 (Tsfasman—Vladut). For an asymptotically exact fam-

D
ily of function fields # ={K;}, any € >0 and any m such that ?m Zute

we have X
logD, (K;)  qm¢*
Pt = S (o)

for g— o, 0(1) being uniform in m. Here u, is the largest of the two roots
of the equation

w w w
5 + ulog, 5 +@2—-uw logr(l— 5) = —2log, £, (1).

We should note that 0(1) from Theorem 3.15 is additive whereas
most of the previous results were estimates of multiplicative type (they
contained logarithms of the quantities in question). It would be interest-
ing to know whether there exist analogues of the above results in the
number field case.

Let us conclude by refering the reader to the Section 6 of [40] for a
list of open questions.

4. Examples
4.1. Towers of modular curves

Let us begin with the examples of asymptotically optimal families
of curves over finite fields coming from towers of modular curves. The
first constructions were carried out by Thara [12], Tsfasman—VIadut—
Zink [42]. The research in this direction was continued by N. Elkies and
many others. Let us describe several constructions.

4.1.1. Classical modular curves
Let us start with the construction of towers of modular curves which
leads to asymptotically optimal infinite function fields. For further infor-
mation, we refer the reader to [38, Chapter 4]. It is well known that the
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modular group I'(1) =PSL,(Z) acts on the Poincaré upper half-plane
hb @b cz= az+b We fix a positive integer N and we define the
Y1¢ 4 T ez+d p 8

principal congruence subgroup of level N by

r(V) ={yer@)|y= 1o dN}
=1y Y = 01 mo .
['(N)<I'(1) and I'(1) /T (N) is isomorphic to PSL,(Z/NZ). In particular,

N; [T(1-¢2) iN=3
[T(1):TI\N)] = (N

6 if N =2.

We also put FO(N):{yel“(l) IyE(; :)mod N}, so that '(N) C Ty (N).

We have [T'(1):To(NM)]1=N[[@—-¢™).
¢IN

Let now I" be a congruence subgroup, that is, any subgroup of I"(1)
containing I'(N). The most important case for us is I'=T'(N) or [y (N).
The set Y =T'\} is equipped with an analytic structure, but is not com-
pact. To compactify it we add points at infinity (named cusps): T'(1)
acts naturally on P1(Q) and we put X, = (I'\h) U (T'\PP(Q)). This way
it becomes a connected Riemann surface called modular curve. We let
X(N) =Xrony» Xo(N) =Xp, vy, Y(N) =Yy, and Yo(N) =Xp ).

If I c T cT'(1), there is a natural projection from X~ — X, which
allows us to compute the genus of the modular curve using the covering
(the function j is in fact the j-invariant of the elliptic curve C/(Z + 27)):

Xr — Xrq) —:> P'(C)

via the Hurwitz formula. For instance,

(N=6)[I"(1) : T(N)]
8xany = 1+ 12N :

It can be shown that Y (1) classifies isomorphism classes of complex el-
liptic curves and that Y, (N) classifies pairs (E, Cy), E being a complex
elliptic curve and Cy being a cyclic subgroup of E of order N.

Now, to construct towers of curves defined over finite fields, we need
to take reductions of our modular curves modulo primes. If S is a scheme
and E — S is an elliptic curve, the set of sections E(S) is an abelian group.
Let Ey(S) denote the points of order dividing N in E(S). We call a level
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N structure an isomorphism ay : Ey(S) — (Z/NZ)2. One can prove that
there exists a smooth affine scheme Y (N) over SpecZ[1/N] classifying
the isomorphism classes of pairs (E, ay) consisting of an elliptic curve
E/SpecZ[1/N] together with a level N structure ay on E. One can prove
that this curve is a model of Y(N) over SpecZ[{y, 1/N1, where {y is a
primitive N th_root of 1. There is also a model of Y,(N) over SpecZ[1/N]
and this “coarse” moduli space classifies pairs consisting of an elliptic
curve together with a cyclic subgroup of order N. Models for X (N) and
X,(N) can also be obtained in such a way that they become compatible
with those for Y(N) and Y, (N). These curves have good reduction over
any prime ideal not dividing N. Moreover, the curve X,(N) can be de-
fined over Q and has good reduction at any prime number not dividing
N. Let p be such prime. We denote by C, y the curve over F,. obtained
by reduction of X,(N) mod p. The curve X(N) can be defined over the
quadratic subfield of Q({) and has good reduction at all the primes not
dividing N. Let Cy be the reduction of X(N) at a prime, i. e. a curve
over FF,.. One can see that the genus of X,(IN) and of X(N) is preserved

under reduction. The points of these curves corresponding to supersin-

gular elliptic curves are [F.-rational and there are W (p—1)of
them on Cy. This leads to the following theorem:

Theorem 4.1 (Thara, Tsfasman—V1adut—Zink). Let £ be a prime num-
ber not equal to p. The families {Cy:} and {Cy 4} satisfy ¢, =p —1 and
therefore are asymptotically optimal.

Note that the result for Cy 4 can be deduced immediately from the

corresponding result for Cyn.

4.1.2. Shimura modular curves

Similar results on Shimura curves allow us to construct directly
asymptotically optimal families over F, with r =q?=p®™, p prime. To do
so, following Ihara, we start with a p-adic field k, with N(p) =q=p™.
Let T be a torsion-free discrete subgroup of G = PSL,(R) X PSL,(k,) with
compact quotient and dense projection to each of the two components
of G (such I'’s exist). Ihara proved the following results that relate the
construction of optimal curves to (anabelian) class field theory, and
therefore are of great interest for us:

Theorem 4.2 (Thara [15]). To any subgroup T" of G with the above
properties one can associate a complete smooth geometrically irreducible curve
X over F, of genus =2, together with a set % consisting of (q—1)(g—1)
IF,-rational points of X such that there is a canonical isomorphism (up to
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conjugacy) from the profinite completion of " to Gal (K* /K) where K= denotes
the maximal unramified Galois extension of the function field K of X in which
all the places corresponding to the points of % are completely split.

An easy computation leads to the following result:

Corollary 4.3. For any square prime power r, there is a tower of
curves defined over IF, with ¢.=/r—1.

In fact, the elliptic modular curves X (N) that we constructed in the
previous section correspond to I'=PSL,(Z[1/p]) and its principal con-
gruence subgroups of level N.

4.1.3. Drinfeld modular curves
The applicability of Drinfeld modular curves to the problem of con-
struction of optimal curves has been known since late 80’s. The results
we are going to discuss next can be found in [38].
Let L be a field of characteristic p and let L{7} denote the ring of

non-commutative polynomials in 7, consisting of expressions of the form
n

> a;7!, a; € L, with multiplication satisfying 7 -a=a” - 7 for any a € L.

Let A=F.[T].

A Drinfeld module is an F,-homomorphism ¢ : A— L{t}, a— ¢,
satisfying a few technical conditions. Let y be the map y : A — L sending
a € A to the term of ¢, of degree zero. Notice that ¢ is determined by
¢r and y by y(T). We consider only Drinfeld modules of rank 2 that
is we assume that ¢, is a polynomial in 7 of degree 2 and we put
¢r=7(T) +gT+ At? (A #0). More generally, one can define Drinfeld
modules over any A-scheme S.

Just as in the classical case, given a proper ideal I of A, one can
define a level I structure on ¢. There is an affine scheme M (I) of finite
type over A that parametrizes pairs (¢, A), where ¢ is a Drinfeld module
over S and A is a level I structure. The scheme M (I) has a canonical
compactification: there exists a unique scheme M (I) containing M (I) as
an open dense subscheme, whose fibres over Spec A[I 17 are smooth
complete curves. The group GL,(A/I) acts naturally on M (I) by oper-
ating on the structures of level I and this action extends to M (I).

From now on, let I be a prime ideal generated by a polynomial of
degree m prime to g — 1. Now, consider the smooth complete (reducible)
curve X(I) =M () ®, F, over F. Note that the A-algebra structure on Fy
is obtained through the reductionmod T. Consider the subgroup

o ={(¢ §)ecrmlcer}
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and let Ty (I) be the image of this subgroup in GL,(A/I). Finally, we con-
sider the smooth complete absolutely irreducible curve X, (I) =X (I) /Ty ().
The image of M(I) — M(I) in X,(I) consists of two Fq—rational points.
Moreover, the following result holds.

Theorem 4.4. The family {X,(I)}, where I is a prime ideal of A gen-
erated by a polynomial of degree prime to q — 1, is an asymptotically exact
family of curves defined over F,, satisfying ¢,> =q — 1 and thus is optimal.

Moreover, N. Elkies proved in [6] that the family of curves X,(T™)
which parametrizes normalized Drinfeld modules (y(T) =1, A =—1)
with a level T" structure is asymptotically optimal. He also related it
to the explicit towers of Garcia and Stichtenoth discussed in the next
subsection.

4.2. Explicit towers

In the last fifteen years, Garcia, Stichtenoth and many others man-
aged to construct asymptotically good towers explicitely in a recursive
way. Their interest comes from coding theory for such towers provide
asymptotically good codes via the construction of Goppa. Let us give an
example of such explicit towers.

Theorem 4.5 (Garcia—Stichtenoth). Let r = q® be a prime power.
The tower {F, } defined recursively starting from the rational function field
Fy=TF,(xy) using the relations F, ; =F, (x,,), where

X
1
satisfies ¢, =+/T — 1 and thus is optimal.

If the cardinality of the ground field is not a square no towers with
¢, = +/r —1 are known. However, there exist optimal towers in the sense
that they have zero deficiency. Such towers can be constructed starting
from an explicit tower over a bigger field using a descent argument (see
Ballet—Rolland [2] for the details) or using modular towers.

Let us now say a word about Elkies modularity conjecture. Elkies
work shows that most of the recursive examples of Garcia and Stichtenoth
can be obtained by finding equations for suitable modular towers. This
made him formulate the following conjecture:

Conjecture 4.6 (Elkies). Any asymptotically optimal tower is modular.

Finally, let us note that there are other interesting constructions
leading to explicit asymptotically good towers of function fields. As an
example we mention the paper [1] by P.Beelen and I.Bouw who use
Fuchsian differential equations to produce optimal towers over ..

q —
Xpp1tXn41 =

’
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4.3. Classfield towers

As it was said in Section 2, tamely ramified infinite extensions of
global fields with finitely many ramified places and with completely split
places give examples of asymptotically good towers. Given a global field
K, it is natural to consider the maximal extension of K unramified out-
side a finite set of places S, in which places from a set T are completely
split. But these extensions are very hard to understand. The maximal £-
extensions are much easier to handle. These extensions are the limits of
the £-S-T-class field towers of K.

For a global field K, two sets of finite places S and T (T # @(FF))
of K, and a prime number £, consider the maximal abelian {-extension
H; (KD of K, unramified outside S and in which the places from T are
split (in the case of function fields the assumption on T to be non-empty
is made in order to avoid infinite constant field extensions). Consider
the tower recursively constructed as follows: Ky =K, K; ;= H; (K. All

the extensions K;/K are Galois, and we denote by G; (K, ?) the Galois
group Gal(U K;, K) A sufficient condition for this tower to be infinite
i

is given by the Golod—Shafarevich theorem: if G is a finite £-group then
dimg, H*(G, Fy) > % dimg, H' (G, F;)*. This allows to construct asymptot-
ically good infinite global fields. The following result is at the base of
many constructions of class field towers with prescribed properties:
Theorem 4.7 (Tsfasman—Vladut [40] (NF), Serre [33] , Niederre-
iter—Xing [28] (FF)). Let K /k be a cyclic extension of global fields of de-
gree {. Let T (k) be a finite set of non archimedean places of k and let T (K)
be the set of places above T (k) in K. Suppose in the function field case that
GCD{!, degp, peT(K)}=1. Let Q be the ramification locus of K /k. Let

(FF) C(T,K/k) = #T (k) +2+46,+2y/#T(K) + 5,
(NF) C(T,K/k) = #T(K) —to+r+n+6,+2—p+

+24/#T(K) +L(r, +1,—p/2) + 6,

where 6, =1 if K contains the {-root of unity, and O otherwise, t, is
the number of principal ideals in T (k), r, = $x(K), 1, =P:(K) and p
is the number of real places of k which become complex in K. Suppose that
#Q = C(T,K/k). Then K admits an infinite unramfied £-T (K)-class field
tower.
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One can construct such cyclic extension using the Grunwald-Wang
theorem (and sometimes even explicitly by hand) and deduce the fol-
lowing result:

Corollary 4.8 (Lebacque). Let n be an integer and let t,,...,t, be
prime powers (NF) (powers of p (FF)). There exists an infinite global field
(both in the number field and function field cases) such that ¢ ,..., ¢
are all >0.

Another way to produce asymptotically good infinite class field tow-
ers is to use tamely ramified instead of unramified class field towers. This
is the subject of [9] and [10].

The question of finding asymptotically good towers with given Ts-
fasman—Vladut invariants equal to zero is more difficult. A related ques-
tion is to find out whether an infinite global extension realizes the maxi-
mal local extension at a given prime. Using results of J. Labute [19] and
A. Schmidt [31], the following theorem is proven:

Theorem 4.9 (Lebacque [24]). Let P={p4, ..., pn}CPlf (2). Assume
that for any i=1, ..., n we have n; distinct positive integers d; 1, ..., d; .. Let
I CPl;(2) be a finite set of finite places of & such that INP =¢. There
exists an infinite global field & such that:

1) INSupp(H) =2,

2) Foranyi=1,...,n,and any j=1,...,n; >0.

pi,NP?i'j - nd; ;

3) One can explicitly estimate ¢, and the deficiency in terms]of P,I,n;
and d;;.

The ¢, , are invariants generalizing the classical ¢,: they count
the asymptotic number of primes of norm g above a given prime p
(see [25] for a definition). In the case of Q they coincide with the clas-
sical ones. This extension is obtained as the compositum of a finite
extension of & with prescribed positive P, Npdi >0 and an infinite class
field tower .Qg (£) satisfying the K (7, 1) property of A. Schmidt.

4.4. Bounds on the deficiency

We have already seen that, using towers of modular curves, one can
produce infinite function fields over F, with zero deficiency. If r is a
square, there are even towers with ¢, = +/r — 1. In the case of number
fields no zero deficiency infinite number fields are known. In fact we
doubt that the class field theory (which is for now the only method to
produce asymptotically good infinite number fields) can ever give such
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field. Let us quote here the example with the smallest known deficiency
due to F. Hajir and Ch. Maire [10].

Let k =Q(&), where & is a root of f(x) =x%+x*—4x3 —7x? —x +1.
Consider the element

N = —671&° +467&% —994E3 + 336052 + 2314 — 961 € 0.

Let K =k(,/7). F.Hajir and Ch. Maire prove using a Golod—Shafarevich
like result that K admits an infinite tamely ramified tower satisfying
6<0.137....

5. Higher dimensional theory

In this section we will mostly consider the function field case since
most of the results we are going to mention are unavailable in the num-
ber field case. However, we will give some references to the number field
case as well.

5.1. Number of points on higher dimensional varieties

The question about the maximal number of points on curves over
finite fields has been extensively studied by numerous authors. The anal-
ogous question for higher dimensional varieties has received compara-
tively little attention most probably due to its being significantly more
difficult.

As for the curves, we have the so-called Weil bound which is in this
case a famous theorem of Deligne. Similarly, this bound is not optimal
and the general framework for improving it is provided by the explicit
formulae. In the case of curves over F, Oesterlé managed to find the
best bounds available through the techniques of explicit formulae for any
given r # 2 (see [33]). A decade later the case of arbitrary varieties over
finite fields was treated by G.Lachaud and M. A. Tsfasman in [37] and
[22]. Let us reproduce here the main results from [22]. To do so we will
have to introduce some notation concerning varieties over finite fields.

Let X be a non-singular absolutely irreducible projective variety of
dimension d defined over a finite field F,. We put X; =X ® F,s and

X=X Qp, F,. Let &,; = &.,(X) be the number of points of X having
degree f. Thus, for the number N; of F,s-points of the variety X; we
have the formula N, = > m®,n. We denote by b,(X) = dimg H* X, Q)

m|f
the [-adic Betti numbers of X.
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The family of inequalities proven in [22] has a doubly positive se-
quence as a parameter. Let us introduce the corresponding notation. To
a sequence of real numbers v=(v,),>, we associate the family of power

series Y, ,(0) = D Uy, t". We denote v, (£) =1, (¢) and let p, be the
n=1
radius of convergence of this power series. A doubly positive sequence
v is such a sequence that 0 <v, <, for all n, vy=1 and for any z€C,
|z] <1 we have 1+2Re,(t) =0.
We will also need the functions
o tmn

Fm,v(k, t) = Z(_l)swm,v(r_kst) = Z o
s=0

—mnk ?
=1+

F,(k,t) = Fy,(k,t).

We let A, (2) =— ‘IninRe Y, (t) and denote
t

|=2
Ik)={i|1<i<2d-1,i#k,i#2d—k}

the set of indices. We have the following inequalities:

Theorem 5.1 (Lachaud—Tsfasman). For any odd integer k, 1<k <d,
any doubly positive sequence V= (U,) o With p, >q*/? and any M > 1 we
have

M
b
Z m¢r"l(X)wm,v(r_(2d_k)/2) < wv(’”_(Zd_k)/z)+1Pv(rk/2)+§k+

m=1

+ Z biAv(r—(i—k)/2)+ Z biwv(r—(i—k)/Z)’

i odd,i#k i even
and
M
> M (X)Fyy o (d —k, r~@470/2) <
m=1 ’
b )
S F(d=k,r ®OR) L E(d—k, )+ 54 3 biF,(d—k,r" R/,

i€l (k)

For example, taking the second inequality with ¥, (t) = % we get

the classical Weil bound, taking the first one with 1, (t) = ﬁ we get

(asymptotically) a direct generalization of the Drinfeld—Vladut bounds.
These inequalities are not straightforward to apply. We refer the reader
to [22] for more details on how to make good choices of the doubly pos-
itive sequence. Unfortunately, in the case of dimension d = 2 the optimal
choice of v is unknown.
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The asymptotic versions of these inequalities can be easily deduced
from Theorem 5.1 once one introduces proper definitions. For a variety

X letb(X) = max b;(X) be the maximum of its [-adic Betti numbers.

Deﬁnltlon 5. 2 A family of varieties {X;} is called asymptotically
&5 (X)) b (X;)
b(x,) and ;=1 b(X ) exist. It is asymp-
totically good if at least one of ¢, is dlfferent from zero.

We can state the following corollary of Theorem 5.1:

Corollary 5.3. In the notation of Theorem 5.1 for an asymptotically
exact family of varieties one has

exact if the limits ¢,; = lim ——=~
J oo

M

Z m¢r"l¢m,v(r_(2d_k)/2) <

m=1
5 i o
<Bh S pAGTIYL S g,
i odd,i#k i even
and

M

Z m¢r"lFm,v(d_k’ r—(2d—k)/2) < + Z ﬂlF (d k T'_(l k)/Z)
m=1 i€l (k)

Taking particular examples of the sequence v one gets more tractable
inequalities (see [22]).

5.2. Brauer—Siegel type conjectures for abelian varieties
over finite fields

One can ask about the possibility of extending the Brauer—Siegel
theorem to the case of varieties over finite fields. The question is not as
easy as it might seem. First, mimicking the proof of Theorem 3.4 one gets
a result about the asymptotic behaviour of the residues of zeta functions
of varieties at s =d (see [46]). Such a result would be interesting if there
was a reasonable interpretation for this residue in terms of geometric
invariants of our variety.

Two other approaches were suggested by B. Kunyavskii and M. Tsfas-
man and by M. Hindry and A.Pacheco. Both of them have for their
starting points the Birch and Swinnerton-Dyer (BSD) conjecture which
expresses the value at s =1 of the L-function of an abelian variety in
terms of certain arithmetic invariants related to this variety. However,
the situation with the asymptotic behaviour of this special value of the
L-functions is much less clear than before. Let us begin with the ap-
proach of Kunyavskii and Tsfasman.
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Let K /T, be a function field and let A/K be an abelian variety over K.
We denote by 111, :=|III(A/K)| the order of the Shafarevich—Tate group
of A, and by Reg, the determinant of the Mordell—Weil lattice of A (see
[11] for definitions). Note that in a certain sense III, and Reg, are the
analogues of the class number and of the regulator respectively. Kun-
yavskii and Tsfasman make the following conjecture concerning families
of constant abelian varieties (see [18]):

Conjecture 5.4. Let A, be a fixed abelian variety over F,. Take an
asymptotically exact family of function fieds & ={K;} and put A; = Ay X
X g K;. Then

. log,(II;-Reg;)
lim ———

i—o &i

. Z 1 () log, o)

This conjecture is actually stated as theorem in [18]. Unfortunately
the change of limits in the proof given in [18] is not justified thus the
proof can not be considered a valid one. In fact the flaw looks very dif-
ficult to repair as the statement of the theorem can be reduced (via a
formula due to J. Milne, which gives the BSD conjecture in this case) to

. . logly (s)
an equality of the type lim ———

2 =log{,,(s) at a given point s€C
i—o K;

with Res= % (in fact s belongs to a finite set of points depending on A).
As we have already mentioned in the discussion following Theorem 3.10
this question does not look accessible at the moment.

Let us turn our attention to the approach of Hindry and Pacheco.
They treat the case in some sense “orthogonal” to that of Kunyavskii and
Tsfasman. Here is the conjecture they make in [11]:

Conjecture 5.5. Consider the family {A;} of non-constant abelian va-
rieties of fixed dimension over the fixed function field K. We have

. log(lll; - Reg,)
im =y = b
where H(A;) is the exponential height of A;.

Using deep arguments from the theory of abelian varieties over
function fields the conjecture is reduced in [11] to the one on zeroes of
L-functions of abelian varieties together with the BSD conjecture. Hindry
and Pacheco are actually faced with the problem of the type discussed
after Theorem 3.10, this time for abelian varieties over function fields.

The following example serves as the evidence for the last conjecture
(see [11]):
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Theorem 5.6 (Hindry—Pacheco). For the family of elliptic curves E4
over F,.(t), where the characteristic of F, is not equal to 2 or 3, defined by
the equations y?+xy =x®—t%, d > 1 and prime to r, the Tate—Shafare-
vich group II(E;/K) is finite and

dl
log(IIl; -Regy) ~ logH(Ey) ~ zgr.

The proof of this theorem uses a deep result of Ulmer [43] who
established the BSD conjecture in this case and explicitly computed the
L-functions of E4. This reduces the statement of the theorem to a an
explicit (though highly non-trivial) estimate involving Jacobi sums.

The Conjectures 5.4 and 5.5 can be united (though not proved) with-
in the general asymptotic theory of L-functions over function fields. Such
a theory also explains why we get 1 as a limit in the second conjecture
and a complicated expression in the first one. We will sketch some as-
pects of the theory in the next subsection.

The analogous problem in the number field case has also been con-
sidered [8]. Unfortunately in the number field case we do not have a
single example supporting the conjecture.

5.3. Asymptotic theory of zeta and L-functions over finite fields

The proofs of the results from this subsection as well as lengthy dis-
cussions can be found in [48]. Let us first define axiomatically the class
of functions we are going to work with. This resembles the so called
Selberg class from the analytic number theory, but, of course the case
of function fields is infinitely easier from the analytic point of view, all
functions being rational (or even polynomial).

Definition 5.7. An L-function L(s) over a finite field I, is a holomor-
phic function in s such that for u =q~° the function £ (u) =L(s) is a
polynomial with real coefficients, ¥ (0) =1 and all the roots of ¥ (u)

are on the circle of radius r~3 for some non-negative integer number d
which is called the weight of the L-function. We say that the degree of
the polynomial £ (u) is the degree of the corresponding L-function. A
zeta function {(s) is a product of L-functions in powers +1:

d
{(s) = l_[Lk(S)wk,
k=0

where w, €{—1, 1} and L, (s) is an L-function of weight k.
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Both zeta functions of smooth projective curves or even varieties
over finite fields and L-functions of elliptic surfaces considered in the
previous sections are covered by this definition.

For the logarithm of a zeta function we have the Dirichlet series
expansion:

logl(s) = D, %r‘fs
f=1
which is convergent for Res > % In the case of a variety X /IF, we have a
simple interpretation for the coefficients A; =|X (IF,s)| as the number of
points on X over the degree f extension of F,.
We are going to work with zeta and L-functions asymptotically, so
we have to introduce the notion of a family. We will call a sequence

d
{1 ket o= {l_[ Li; ()™ }kil . of zeta functions a family if the total
i=0 =l

d
degree g, = D g, tends to infinity and d remains constant. Here gj; are

i=0
the degrees of the individual L-functions L;;(s) in {;(s).
Definition 5.8. A family {{,(s)};—; . of zeta functions is called
asymptotically exact if the limits

re=Jim G and 3y Jim 5
exist for each i =0,...,d and each f €Z, f > 1. The family is called
asymptotically bad if A, =0 for any f and asymptotically good otherwise.

In the case of curves over finite fields the denominators of zeta func-
tions are negligible from the asymptotic point of view. In general we give
the following definition:

Definition 5.9. Let {{;(s)} be an asymptotically exact family of ze-
ta functions. Define the set I C {0...d} by the condition i €1 if and
only if y;=0. We define ¢, (s) =] [ L;;(s)* the negligible part of £ (s)

iel
and ., (s) = l_[ Li;(s)“ the essential part of {,(s). Define also
i€{0,...,d}\I
d.=max{i|i¢I}.

Definition 5.10. We say that an asymptotically exact family of zeta

or L-functions is asymptotically very exact if the series

= _fde
Z Mflq 2

f=1
is convergent.
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In the case of curves or varieties the positivity of A, automatically
implies the fact that the corresponding family is asymptotically very ex-
act. This is of course false in general (an obvious example of a fam-
ily which is asymptotically exact but not very exact is given by L, (s) =
=(1—q%k). In general most of the results are proven for asymptotically
very exact families and not just for asymptotically exact ones.

We have already noted that the concept of limit zeta functions is of
utmost importance in the asymptotic theory.

Definition 5.11. Let {{;(s)} be an asymptotically exact family of ze-
ta functions. Then the corresponding limit zeta function is defined as

=)

Clim (s) = eXP( 2 4 q_fs)-
=0

Now, we can state the generalizations of most of the results concern-
ing zeta and L-functions over finite fields, given in the previous sections.
Let us begin with the basic inequalities. In fact, one should be able to
write most of the inequalities from Subsection 5.1 in this more general
setting. We give only the simplest statement of this type here:

Theorem 5.12. Let {{; (s)} be an asymptotically very exact family of
geta functions. Then

% a | le ‘.
Wi, 24507 S X Gy
The Brauer—Siegel type results can also be proven in this setting. The
following theorem includes all the function field versions of the Brauer—
Siegel type results from Section 3 except for the explicit ones (which can
also be, in principle, established for general zeta and L-functions).
Theorem 5.13. 1) For any asymptotically exact family of zeta func-

d
tions {{,(s)} and any s with Res > - we have

2
. log Z:e,k (S)
;}1_% T 10g {1im (5.
If, moreover, 2Res €Z, then
!
lim 2 1002 9).
k—o0 8k

. . . . d d.+1
The convergence is uniform in any domain ?e +e<Res< eT —¢, €€
1
S (O, 5)
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2) If {x(s)} is an asymptotically very exact family with wy, =1 we

have:

. log |Ck| de
— < . —
im =g Slog Cin( 5 )

where 1, and c; are defined using the Taylor series expansion

0 =a(s- 5 ol ).

In the case of arbitrary L-functions the equality in (2) does not hold
in general. This means that the similar questions previously discussed
for function fields or elliptic curves over function fields are indeed of
arithmetic nature.

Finally we will state a result on the distribution of zeroes. Let L(s) be
an L-function and let p, ..., p, be the zeroes of the corresponding poly-

nomial £ (u). Define 6, € (—m, 7] by p, =q%/2e!%. One can associate
g
the measure A; = % D, 8¢, to L(s).
k=1

Theorem 5.14. Let {L i(s)} be an asymptotically very exact family of
L-functions. Then the limit distribution lim A; exists and has a nonneg-

e
ative continuous density function given ]by an absolutely and uniformly
convergent series 1 —2 > A, cos(kx)q_%.

k=1

In the case of families of elliptic curves over FF,.(t) P. Michel provides
in [27] an explicit estimate for the discrepancy in the equidistribution of
zeroes and a much more precise estimate for it on average.

A number of open questions concerning asymptotic properties of ze-
ta and L-functions can be found in the last section of [48]. It seems
that an analogue of this general asymptotic theory can be developed in
the number field case (at least assuming some plausible conjectures like
GRH or the Ramanujan—Peterson conjecture). This is yet to be done.
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Asymptotic properties of zeta functions
over finite fields

Abstract. In this paper we study asymptotic properties of fami-
lies of zeta and L-functions over finite fields. We do it in the context
of three main problems: the basic inequality, the Brauer—Siegel type
results and the results on distribution of zeroes. We generalize to this
abstract setting the results of Tsfasman, Vladut and Lachaud, who stud-
ied similar problems for curves and (in some cases) for varieties over
finite fields. In the classical case of zeta functions of curves we extend a
result of Thara on the limit behaviour of the Euler—Kronecker constant.
Our results also apply to L-functions of elliptic surfaces over finite fields,
where we approach the Brauer—Siegel type conjectures recently made
by Kunyavskii, Tsfasman and Hindry.

1. Introduction

The origin of the asymptotic theory of global fields and their zeta
functions can be traced back to the following classical question: what
is the maximal number of points N,(g) on a smooth projective curve of
genus g over the finite field F,. The question turns out to be difficult
and a wide variety of methods has been used for finding both upper and
lower bounds.

The classical bound of Weil stating that

INg(8) —q—1] < 2gvq
though strong turns out to be far from optimal. A significant improve-
ment for it when g is large was obtained by Drinfeld and Vladut [3].

. N,(g)
Namely, they proved that lim sup 2 <,/q-1
g—®

This inequality was a starting point for an in-depth study of asymp-
totic properties of curves over finite fields and of their zeta functions
initiated by Tsfasman and Vladut. This work went far beyond this initial
inequality and has led to the introduction of the concept of limit zeta
function which turned out to be very useful [21]. It also had numerous
applications to coding theory via the so-called algebraic geometric codes
(see, for example, the book [23] for some of them).

Alexey Zykin, Asymptotic properties of zeta functions over finite fields, Finite Fields and
their Appications, 35 (2015), 247—283.
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The above mentioned study of limit zeta functions for families curves
involves three main topics:

(1) The basic inequality, which is a generalization of the Drinfeld —
Vladut inequality on the number of points on curves.

(2) Brauer—Siegel type results which are the extensions of the clas-
sical Brauer—Siegel theorem describing the asymptotic behaviour of the
class numbers and of the regulators in families of number fields. Here
asymptotic properties of the special values of zeta functions of curves
(such as the order of the Picard group) are studied.

(3) The distribution of zeroes of zeta functions (Frobenius eigenval-
ues) in families of curves.

There are at least two main directions in the further study of these
topics. First, one may ask what are the number field counterparts of
these results (for number fields and function fields are regarded by many
as facets of a single gemstone). The translation of these results to the
number field case is the subject of the paper [22]. The techniques turns
out to be very analytically involved but the reward is no doubts sig-
nificant as the authors managed to resolve some of the long standing
problems (such as the generalization of the Brauer—Siegel theorem to
the asymptotically good case, that is when the ratio ny/log|Dy| of the
degree to the logarithm of the discriminant does not tend to zero) as
well as to improve several difficult results (Odlyzko—Serre inequalities
for the discriminant, Zimmert’s bound for regulators).

Second, one may ask what happens with higher dimensional vari-
eties over finite fields. Here the answers are less complete. The first topic
(main inequalities) was extensively studied in [12]. The results obtained
there are fairly complete, though they do not directly apply to L-functions
(such as L-functions of elliptic curves over function fields). The second
topic is considerably less developed though it received some attention in
the recent years in the case of elliptic surfaces [5], [11] and in the case of
zeta functions of varieties over finite fields [24]. As for the results on the
third topic one can cite a paper by Michel [14] where the case of elliptic
curves over [F, (t) is treated. Quite a considerable attention was devoted
to some finer questions related to the distribution of zeroes [10]. How-
ever, to our knowledge, not a single result of this type for asymptotically
good families of varieties was previously known.

The goal of our paper is to study the above three topic in more gen-
erality separating fine arithmetic considerations from a rather simple (in
the function field case) analytic part. We take the axiomatic approach,
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defining a class of L-functions to which our results may be applicable.
This can be regarded as the function field analogue of working with
the Selberg class in characteristic zero, though obviously the analytic
contents in the function case is much less substantial (and often times
even negligible). In our investigations we devote more attention to the
second and the third topics (Brauer—Siegel type results and distribution
of zeroes respectively) as being less developed then the first one. So,
while giving results on the basic inequality, we do not seek to prove them
in utmost generality (like in the paper [12]). We hope that this allows us
to gain in clarity of the presentation as well as to save a considerable
amount of space.

We use families of L-functions of elliptic curves over function fields
as our motivating example. After each general statement concerning
any of the three topics we specify what concrete results we get for zeta
functions of curves, zeta functions of varieties over finite fields, and
L-functions of elliptic curves over function fields. Our statements about
the distribution of zeroes (Theorem 4.1 and Corollary 4.9) imply in the
case of elliptic curves over function fields a generalization of a result due
to Michel [14] (however, unlike us, Michel provides a rather difficult
estimate for the error term). In the study of the Brauer—Siegel type
results we actually manage to find something new even in the classical
case of zeta functions of curves, namely we prove a statement on the limit
behaviour of zeta functions of which the Brauer—Siegel theorem from
[21] is a particular case (see Theorem 5.5 and Corollary 5.14). We also
reprove and extend some of Thara’s results on Euler—Kronecker constant
of function fields [6] incorporating them in the same general framework
of limit zeta functions (see Corollary 5.16).

Here is the plan of our paper. In Section 2 we present the axiomatic
framework for zeta and L-functions with which we will be working, then
we give the so called explicit formulae for them. In the end of the section
we introduce several particular examples coming from algebraic geome-
try (zeta functions of curves, zeta functions of varieties over finite fields,
L-functions of elliptic curves over function fields) to which we will apply
the general results. Each further section contains a subsection where
we show what the results on abstract zeta and L-functions give in these
concrete cases. In Section 3 we outline the asymptotic approach to the
study of zeta and L-functions, introducing the notions of asymptotically
exact and asymptotically very exact families. We prove the zero distri-
bution results in Section 4. There we also give some applications to the
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distribution of zeroes and the growth of analytic ranks in families of el-
liptic surfaces (Corollaries 4.9 and 4.11). The study of the Brauer—Siegel
type results is undertaken in Section 5. In the same section we show
how these results imply the formulae for the asymptotic behaviour of
the invariants of function fields generalizing the Euler—Kronecker con-
stant (Corollary 5.16) and a certain bound towards the conjectures of
Kunyavskii—Tsfasman and Hindry—Pacheko (Theorem 5.27). Section 6
is devoted to the proof of several versions of the basic inequality. In this
section we generalize some of the results from [12] to the case of zeta and
L-functions with not necessarily positive coefficients. Finally, in Section 7
we discuss some possible further development as well as open questions.

2. Zeta and L-functions
2.1. Definitions

Let us define the class of L-functions we will be working with. Let ¥,
be the finite field with g elements.

Definition 2.1. An L-function L(s) over a finite field Fyisa holomor-
phic function in s such that for u =q~° the function ¥ (u) =L(s) is a
polynomial with real coefficients, £ (0) =1 and all the roots of £ (u)
are on the circle of radius q_% for some non-negative integer number w.

We will refer to the last condition in the definition as the Riemann
hypothesis for L(s) since it is the finite field analogue of the classical
Riemann hypothesis for the Riemann zeta function. The number w in
the definition of an L-function will be called its weight. We will also say
that the degree d of the polynomial £ (u) is the degree of the L-function
L(s) (it should not be confused with the degree of an L-function in the
analytic number theory, where it is taken to be the degree of the polyno-
mial in its Euler product).

The logarithm of an L-function has a Dirichlet series expansion

*® A
logL(s) = 3 qu‘fs,
f=1

which converges for Res > % For the opposite of the logarithmic deriva-
tive we get the formula:
LI's) < ')

i = B lesd " =gy loga.
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There is a functional equation for L(s) of the form

Lw—s) = gt~ 5L, @1

where d =deg . (u) and w = =1 is the root number. This can be proven

directly as follows. Let £ (u) = l_[(l — p—) Then
l=1 t

() =110 k) = FTova e 1% 1) =
= (= 1)d ¢ —wd —dl—[(l__)

U

where t is the multiplicity of the root —q"/?. We used the fact that all
coefficients of £ (u) are real, so its non-real roots come in pairs p and
P, PPp=4q".

Definition 2.2. A zeta function {(s) over a finite field Fyisa product
of L-functions in powers +1:

¢ =[]L®,
i=0

where ¢; €{—1, 1}, L;(s) is an L-function of weight i.
For the logarithm of a zeta function we also have the Dirichlet series
expansion:
c A
log¢(s) = X, 7q*
=

which is convergent for Res > %

2.2. Explicit formulae

In this subsection we will derive the analogues of Weil and Stark
explicit formulae for our zeta and L-functions. The proofs of the Weil
explicit formula can be found in [15] for curves and in [12] for varieties
over finite fields. An explicit formula for L-functions of elliptic surfaces
is proven in [1]. In our proof we will follow the latter exposition.

Recall that our main object of study is {(s) = ]_[ L;(s)% a zeta func-
tion with L;(s) given by i=0
d; q

L) =T](1-2 o ).

j=1

As before, we define A via the relation log {(s) = i ﬁ —fs
B f g S _f71 f q .
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Proposition 2.3. Let v=(vf) s> be a sequence of real numbers and

0

let Y, ()=, vftf . Let p, be the radius of convergence of the series v (t).
f=1

Assume that |t| <q~%/?p,, then

oo

w di .
Af”ftf ==& 2, Pu(q'pyt).
=1 =0  j=1

Proof. Let us prove this formula for L-functions. The formula for
zeta functions will follow by additivity.

d
The simplest is to work with % (u) = l_[(l — %) The coefficient of

j=1
uf in —u¥’(u)/ £ (u) is seen to be Z p‘f for f = 1. From this we derive
P
the equality:
Yol =—Ay
P

The map p — (¢ p) ! permutes the zeroes {p}, thus for any f >1 we
have:

2.(@¥p) = —A;.
P

Multiplying the last identity by vftf and summing for f =1, 2, ... we get
the statement of the theorem. O
From this theorem one can easily get a more familiar version of the
explicit formula (like the one from [15] in the case of curves over finite
fields).
Corollary 2.4. Let L(s) be an L-function, with zeroes p =q
0 €[—m, ]. Let f: [—m, m] — C be an even trigonometric polynomial

—w/ZeiG’

Y
f(0) =yy+2 > v,cos(nbh).
n=1
Then we have the explicit formula:
Y o
2 f(0)=ved =22 veArq 2.
0 f=1
Proof. We putt= q_% in the above explicit formula and notice that

the sum over zeroes can be written using cos since all the non-real zeroes
come in complex conjugate pairs. O
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In the next sections we will also make use of the so called Stark
formula (which borrows its name from its number field counterpart
from [18]).

Proposition 2.5. For a zeta function {(s) we have:

10 _ & & 1Y 1 v 1
logq ¢(s) —E Zun—l 2i§)8idi+logql§)8i iz s—0,°

we assume that q~% = Py the sum is taken over all possible roots 0
counted with multiplicity.

Proof. The first equality is a trivial consequence of the formulae
expressing %;(u) as polynomials in u.

The second equality follows from the following series expansion:

logq logg .. 1
p‘lqs—l+ 2 _Ylgrolo QZ: s—0° -
q°=p
6|<T

2.3. Examples

We have in mind three main types of examples: zeta functions of
curves over finite fields, zeta functions of varieties over finite fields and
L-functions of elliptic curves over function fields.

Example 2.6 (Curves over finite fields). Let X be an absolutely irre-
ducible smooth projective curve of genus g over the finite field F;, with
q elements. Let ¢ be the number of points of degree f on X. The zeta
function of X is defined for Res>1 as

Ix() =T1A—qg ™.
f=1
It is known that {x (s) is a rational function in u=q~°. Moreover,

H(l—p—l)(l—p—l)

j=1

gK(S) = (1_u)(1_qu) >

and |p;|= q_% (Weil’s theorems). Note that the functional equation im-
plies that the real Frobenius roots all have even multiplicity. It can easily
be seen that in this case Ap=N;p(X)is the number of points on X ®Fq Fyrs
over ;. A very important feature of this example which will be lacking
in general is that A, >0 for all f.

Though {x(s) is not an L-function, in all asymptotic considerations
the denominator will be irrelevant and it will behave as an L-function.



160 Asymptotic properties of zeta functions over finite fields

This example will serve as a motivation in most of our subsequent
considerations, for most (but not all, see Section 5) of the results we
derive for general zeta and L-functions are known in this setting.

Example 2.7 (Varieties over finite fields). Let X be a non-singular
absolutely irreducible projective variety of dimension n defined over
a finite field F,. Denote by |X| the set of closed points of X. We put
Xy =X®g Fyr and X=XQ®; Fq. Let ¢ be the number of points of X

q q
having degree f, that is ¢, = |{v € |X||deg(v) = f}|. The number N; of
IF,r-points of the variety X, is equal to Ny = z‘}[ mo,,.
m

Let b,(X) = diran H*(X, Q) be the l-adic Betti numbers of X. The

zeta function of X is defined for Re(s) > n by the following Euler product:

1 z fen—
Lx(s) = ]‘[ W:Efl‘q f) qu,

velX]|

where Nv = q_deg”. If we set Zx (u) = x(s) with u=q~* then the func-
tion Zy (u) is a rational function of u and can be expressed as

2n .
Zyw) =[]P(X, )",
i=0

where
d

petw=T1(1-L),

j=r- P
and |py| = q /2 (Weil’s conjectures proven by Deligne). Moreover,
Py X,u)=1—-u and P,,(X,u) =1—q"u.

As before, we have that Ay =N¢(X)=0.

The previous example is obviously included in this one. However,
it is better to separate them as in the case of zeta functions of general
varieties over finite fields much less is known. One more reason to dis-
tinguish between these two examples is that, whereas zeta functions of
curves asymptotically behave as L-functions, zeta functions of varieties
are “real” zeta functions. Thus there is quite a number of properties that
simply do not hold in general (for example, some of those connected to
the distribution of zeroes).

Example 2.8 (Elliptic curves over function fields). Let E be a non-
constant elliptic curve over a function field K = Fq (X) with finite con-
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stant field F,. The curve E can also be regarded as an elliptic surface
over IF. Let g be the genus of X. Places of K (that is points of X) will

be denoted by v. Let d, =degv, |v|=Nv =q8" and let F, =Fy, be the
residue field of v.

For each place v of K we define a, from |E,(F,)|=|v|+1—a,,
where |E, (F,)| is the number of points on the reduction E,, of the curve E.
The local factors L, (s) are defined by

(A —a,|v|*+v|'"*)7, if E, is non-singular;
L,(s)=

1—a,lv|™, otherwise.

We define the global L-function L;(s) = ]_[Lv(s). The product con-

verges for Res > % and defines an analytic fnction in this half-plane.

Define the conductor Ny of E as the divisor > n,v with n, =1 at places
v

of multiplicative reduction, n, =2 at places of additive reduction for
charF, >3 (and possibly larger when charF; =2 or 3) and n, =0 other-
wise. Let ny =deg Ny =>.n, degv.

v

It is known (see [1]) that Lz(s) is a polynomial % (u) in u=q~° of
degree np +4g — 4. The polynomial %, (u) has real coefficients, satisfies
%:(0) =1 and all of its roots have absolute value q~!.

Let a,, @, be the roots of the polynomial 1 — a,t + |v|t? for a place
v of good reduction and let a, =a, and a, =0 for a place v of bad

reduction. Then from the definition of L;(s) one can easily deduce that

A= Y dy(am+am, (2.2)
md,=f

the sum being taken over all places v of K and m = 1 such thatmdegv = f.

This example will be the principal one in the sense that all our results
on L-functions are established in the view to apply them to this particular
case. These L-functions are particularly interesting from the arithmetic
point of view, especially due to the connection between the special value
of such an L-function at s =1 and the arithmetic invariants of the ellip-
tic curve (the order of the Shafarevich—Tate group and the regulator)
provided by the Birch and Swinnerton-Dyer conjecture.

We could have treated the more general example of abelian varieties
over function fields. However, we prefer to restrict ourselves to the case
elliptic curves to avoid technical complications.
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3. Families of zeta and L-functions
3.1. Definitions and basic properties

We are interested in studying sequences of zeta and L-functions. Let
us fix the finite field .

Definition 3.1. We will call a sequence {L;(s)}¢—; . of L-functions
a family if they all have the same weight w and the degree d; tends to
infinity.

Definition 3.2. We will call a sequence

(e hr o = {r[Lius)gf}
=0

k=1...0

w
of zeta functions a family if the total degree Ek =" dj tends to infinity.
i=0
Here d;;, are the degrees of the individual L-functions L;.(s) in {;(s).
Remark 3.3. In the definition of a family of zeta functions we as-
sume that w = wy, and ¢; = ¢;; are the same for all k. Obviously, any
family of L-functions is at the same time a family of zeta functions.
Definition 3.4. A family {{; (s)}i=1. .. of zeta or L-functions is called
asymptotically exact if the limits

5;=6;({{;()}) = lim @ and Ay = A;({k(s)}) = lim /i—ﬂc
k—o d, k—o dy
exist foreachi=0, ..., w and each f €7, f > 1. It is called asymptotically
bad if A; =0 for any f and asymptotically good otherwise.
The following (easy) proposition will be important.
Proposition 3.5. Let L(s) be an L-function. Then
1) for each f we have the bound |A| $qw7fd;
2) there exists a number C(q, w, s) depending on q, w and s but not on
d such that |logL(s)| < C(q, w, s)d for any s with Res # % The number
C(q, w,s) can be chosen independent of s if s belongs to a vertical strip
a<Res<b, %¢ [a, b].
Proof. To prove the first part we use Proposition 2.1. Applying it to
the sequence consisting of one non-zero term we get:

Ap=— Y q“p’. 3.1
£ (p)=0

The absolute value of the right hand side of this equality is bounded
wf
by g>d.
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To prove the second part we assume first that Res=¢+ % > % We
have the estimate:

0

As 2 d wf
logL — —fs a = —f Res < d
[log L(s)| ‘fz:l f Z f 2 Z fqef
For Res < & we use the functional equation (2.1). O
Proposition 3.6. Any family of zeta and L-functions contains an asymp-
totically exact subfamily.

d. A
Proof. We note that both dle and =& are bounded. For the first
k k
expression it is obvious and the second expression is bounded by Propo-

sition 3.5. Now we can use the diagonal method to choose a subfamily
for which all the limits exist. O

As in the case of curves over finite fields we have to single out the
factors in zeta functions which are asymptotically negligible. This can be
done using Proposition 3.5.

Definition 3.7. Let {{;(s)} be an asymptotically exact family of ze-
ta functions. Define the set I € {0, ..., w} by the condition i €I if and
only if §; =0. We define ¢, (s) =[ [ Ly (s)* the negligible part of £ (s)

iel
and C.;(s) = l_[ Ly (s)% the essential part of {;(s). Define also
i€{0,...,w NI
w, =max{i€A{0, ..., w}\I}.

Remark 3.8. The functions {,,;(s) and (,,(s) make sense only for
families of zeta functions and not for individual zetas. We also note that
the definitions of the essential and the negligible parts are obviously
trivial for families of L-functions.

The following proposition, though rather trivial, turns out to be useful.

Proposition 3.9. For an asymptotically exact family of zeta functions
{Ci(s)} we have A;(3(8)) =Ap(Lec($)).

Proof. This is an immediate corollary of Proposition 3.5. O

The condition on a family to be asymptotically exact suffices for ap-
plications in the case of varieties over finite fields due to the positivity of
coefficients A;. However, in general we will have to impose somewhat
more restrictive conditions on the families.

Definition 3.10. We say that an asymptotically exact family of zeta
or L-functions is asymptotically very exact if the series

oo

_ Jwe
2 1 2plg™
f=1

is convergent.
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Example 3.11. An obvious example of a family which is asymp-
totically exact but not very exact is given by the family of L-functions

L(s)=01- q‘s)k. We have Af =—1 for any f and the series Z (=D is
clearly divergent. =1
Proposition 3.12. Assume that we have an asymptotically exact fam-

ily of zeta functions

{4k ()} = {]_[Lik(s)si}k )
=1...0

i=0
such that all the families {L; (s)} are also asymptotically exact. Then,
the family {{,(s)} is asymptotically very exact if and only if the family
{Ly(s)} is asymptotically very exact.

Proof. This follows from Proposition 3.5 together with Proposi-
tion 3.9. O

In practice, this proposition means that the asymptotic behaviour of
w, —

zeta functions for Res > is essentially the same as that of their
weight w, parts. Thus, most asymptotic questions about zeta functions
are reduced to the corresponding question about L-function.

3.2. Examples

As before we stick to three types of examples: curves over finite
fields, varieties over finite fields and elliptic curves over function fields.

Example 3.13 (Curves over finite fields). Let {X;} be a family of
curves over F,. Recall (see [21]) that an asymptotically exact family of
curves was defined by Tsfasman and Vladdut as such that the limits

(X))

¢; = lim (3.2)

jooe &
exist. This is equivalent to our definition since Ap=Np(X)= Z mo,,.
m|f
Note a little difference in the no/{malization of coefficients: in the case
ﬁ since 2g; is the degree of the corre-
Jj
sponding polynomial in the numerator of x, () and the authors of [21]

of curves we let 7Lf {X;h= lim
Jjooo

choose to consider simply lim il

Joo &)
For any asymptotically exact family of zeta functions of curves the
negligible part of {y(s) is its denominator (1 —q~*)(1—q'™*) and the
essential part is its numerator. Thus, zeta functions of curves asymptot-
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ically behave like L-functions. Any asymptotically exact family of curves
is asymptotically very exact as shows the basic inequality from [21] (see
also Corollary 6.2 below), which is in fact due to positivity of A.
Example 3.14 (Varieties over finite fields). In the case of varieties of
fixed dimension n over a finite field F, we have an analogous notion of
an asymptotically exact family [12], namely we ask for the existence of

the limits
. 9p(X) b;(X;)
¢f=j15?ob(X) d5_ﬁ’_'loob(X)’

2n
where b(X )= Z b; (X;) is the sum of Betti numbers. Again this defini-

tion and our Deﬁmtlon 3.4 are equivalent.

In this case the factors (1 —qg~*) and (1 —q"*) of the denominator
are also always negligible. However, we can have more negligible factors
as the following example shows.

Take the product C x C, where C is a curve of genus g — 0. The di-
mension of the middle cohomology group H? grows as g% and b; =b; =2g
(Kunneth formula). Thus -, (s) behaves like the inverse of an L-function.

If for an asymptotically exact family of varieties we have w,=w —1=
=2n—1 then it is asymptotically very exact as shows a forrn of the basic

inequality [12, (8.8)] (it actually gives that the series Z A q‘f (n—1/2)
always converges), see also Corollary 6.7 below. J=t

Example 3.15 (Elliptic curves over function fields). In the last exam-
ple we will be interested in two particular types of asymptotically exact

families.

Asymptotically bad families. Let us fix a function field K =T, (X)
and let us take the sequence of all pairwise non-isomorphic elliptic curves
E;/K. We get a family of L-functions since ny — . From (2.2) we deduce

that [Af| < 2( > dv)qg which is independent of ng . Thus, this family is
d,|f

asymptotically exact and asymptotically bad, i.e. A; =0 for any f > 1.
This will be the only fact important for our asymptotic considerations.
There will be no difference in the treatment of this particular family or
in that of any other asymptotically bad family of L-functions.

This family is considered in [5] in the connection with the gener-
alized Brauer—Siegel theorem. The main result of that paper is the re-
duction of the statement about the behaviour of the order of the Tate—
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Shafarevich group and the regulator of elliptic curves over function fields
to a statement about the values of their L-functions at s = 1. See also [4]
for a similar problem treated in the number field case.

Base change. Let us consider a family which is, in a sense, orthog-
onal to the previous one. Let K = Fq (X) be a function field and let E/K
be an elliptic curve. Let f: & — X be the corresponding elliptic surface.
Consider a family of coverings of curves X =X, < X;... < X; — ... and
the family of elliptic surfaces &, given by the base change:

(g’:évo (9)31 e éai
o l
X=XO X]. ee Xl

Let @, ((X;) be the number of points on X;, lying above a closed point
v €|X|, such that their residue fields have degree f over F,.
Lemma 3.16. The limits

_ _ 1 ¢u,f(Xi)
¢v,f - ¢U,f({Xi}) - lgg g(X)

1

always exist.

Proof. We will follow the proof of the similar statement for &,
from [22, Lemma 2.4]. Let K, 2 K; 2 K be finite extension of function
fields. From the Riemann—Hurwitz formula we deduce the inequality
g(Ky) — 1= [Ky: Ky1(g(K;) — 1), where [K, : K;] is the degree of the
corresponding extension. Now, if we fix w a place of K; above v and
consider its decomposition {wy, ..., w,} in K,, then we have

-
> degw; < [Ky: Kq].
i=1
Thus we get for any n = 1 the inequality
n n
2 [ (Ky) S [Ky: Kyl Y f, 5(Ky).
f=1 f=1
Dividing we see that

2 fe (K [P, p(Ky)
f=1 f=1

) —-1 S gKp-1
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nofo, (X))
It follows that the sequence fgl X1

negative for any fixed n and so has a limit. Taking n =1 we see that
¢, 1 exists, taking n =2 we derive the existence of ¢, , and soon. [
Let us remark that ¢;(X;) = >, &, (X)), the sum being taken
mdegv=f

over all places v of K and the same equality holds for ¢ (in particular,

the family {X;} is asymptotically exact).
For our family we can derive a concrete expression for the Dirichlet
series coefficients of the logarithms of L-functions. Indeed, (2.2) gives us
Ap= Y md,d,,(am+amk). (3.3)

mkd,=f

is non-increasing and non-

Lemma 3.17. Let E;/K; be a family of elliptic curves obtained by a
base change and let n;=ng, i, be the degree of the conductor of E;/K;. Then

the ratio % is bounded by a constant depending only on E,/K,.

If, furthermore, charF, # 2,3 or the extensions K;/K, are Galois for
all i then the limit v =lim R exists.

Proof. The proof basically consists of looking at the definition of the
conductor and applying the same method as in the proof of Lemma 3.16.
Recall, that if E/K is an elliptic curve over a local field K, T;(E) is its Tate
module, [ # char Fo, VE)=T(E)®Qy, I (K/K) is the inertia subgroup of
Gal(K/K), then the tame part of the conductor is defined as

e(E/K) = dimg, (V,(E)/V,(E)' /0.

It is easily seen to be non increasing in extensions of K, moreover it is
known that 0 < e(E/K) <2 (see [17, Chap. 1V, §10]).

If we let L=K(E[ID, y;(L/K) =|G;(L/K)|, where G;(L/K) is the
i™ ramification group of L/K, then the wild part of the conductor is
defined as
- YiL/K)
S(E/K) = l; Yo(L/K)
One can prove [17, Chap.IV, §10] that 6§ (E/K) is zero unless the char-
acteristic of the residue field of K is equal to 2 or 3. In any case, the
definition shows that §(E/M) can take only finitely many values if we
fix E and let vary the extension M /K.

The exponent of the conductor of E over the local field K is defined to
be f(E/K)=¢(E/K)+ 6(E/K). For an elliptic curve E over a global field

dimg, (E[1]/E[11%¢/0).
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K the v-exponent of the conductor is taken to be n,(E/K) = f(E/K,),
where K, is the completion of K at v.

From the previous discussion we see that for each valuation v of K|,
and each place w of K; over v there is a constant ¢, (depending on v and
on K) such that n,, (E/K;) <c,. Thus

np= > nydegw< 3 Cvzdegw<( > Cy)‘[KitKo],

weVal(K;) veVval(K) wlv veVal(K)

so the ratio E is bounded. If, furthermore, charF, # 2, 3, then an ar-

gument similar to the one used in the proof of Lemma 3.16 together
with the fact that n, (E) <n,(E) if w lies above v in an extension of

fields gives us that the sequence g—l is non-increasing and so it has a limit
i

v =V({Ei/Ki})-
In the case of Galois extensions we notice that n,, (E) must stabilize
in a tower and all the n, (E) are equal for w over a fixed place v. Thus
the previous argument is applicable once again. O
Now we can prove the following important proposition:
Proposition 3.18. Any family of elliptic curves obtained by a base
change contains an asymptotically very exact subfamily. If, furthermore,
charFy # 2, 3 or the extensions K;/K, are Galois for all i then it is itself
asymptotically very exact.
Proof. Recall that for each E;/K; the degree of the corresponding
L-function is n; + 4g; — 4. It follows from the previous lemma that it
is enough to prove the existence of the limits A ¢ =lim A (B

i—o i

and the

convergence of the series Y. 12 flq‘f .
f=1
The first statement is a direct corollary of Lemma 3.16 and (3.3). As
for the second statement, we have the following bound:

£ £
2 2

f
IAfl<2 D md,®,,q7 =2 ), 1$,q2 = 2Nsq-.
mkd,=f lk=f
- i . . Np(XD
Now, the convergence of the series Y. v;q~ 2 with v; = lim is a
=) f F7ios &

consequence of the basic inequality for zeta functions of curves ([20,
Corollary 1] or Example 6.10). O

Remark 3.19. It would be nice to know whether the statement of
the previous proposition holds without any additional assumptions, i. e.
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whether a family obtained by a base change is always asymptotically very
exact. This depends on Lemma 3.17, which we do not know how to prove
in general.

The family of elliptic curves obtained by the base change was studied
in [11] again in the attempts to obtain a generalization of the Brauer—
Siegel theorem to this case. Kunyavskii and Tsfasman formulate a conjec-
ture on the asymptotic behaviour of the order of the Tate—Shafarevich
group and the regulator in such families (see Conjecture 5.25 below).
They also treat the case of constant elliptic curves in more detail. Unfor-
tunately, the proof of the main theorem [11, Theorem 2.1] given there
is not absolutely flawless (the change of limits remains to be justified,
which seems to be very difficult if not inaccessible at present).

Remark 3.20. If, for a moment, we turn our attention to general
families of elliptic surfaces the following natural question arises:

Question 3.21. Is it true that any family of elliptic surfaces contains
an asymptotically very exact subfamily?

The fact that it is true for two “orthogonal” cases makes us believe
that this property might hold in general.

4. Distribution of zeroes
4.1. Main results

In this section we will prove certain results about the limit distri-
bution of zeroes in families of L-functions. As a corollary we will see
that the multiplicities of zeroes in asymptotically very exact families of
L-functions can not grow too fast.

Let C =C[O0, r] be the space of real continuous functions on [0, 7]
with topology of uniform convergence. The space of measures u on
[0, ] is by definition the space .# , which is topologically dual to C. The
topology on ./ is the x-weak one: u; — u if and only if u;(f) — u(f) for
any feC.

The space C can be considered as a subspace of ./ : if ¢ (x) € C then

up(H) = [ FCOPE dx.

The subspace C is dense in ./ in *-weak topology.
Let L(s) be an L-function and let p,, ..., p4 be the zeroes of the cor-
responding polynomial % (u). Define 6, € (—m, 1] by p, =q~“/?e!%. For
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a zero p €{pq, ..., pqr we let
the multiplicity of p, if p € R;
m =
P % - (multiplicity of p), if p € R (thatis p = q~%/?).

Since % (u) € R[u], we note that ms=m, for any zero p. We asso-
ciate a measure to L(s) in the following way

2
AU/L(f) = E Z mpk59k (f)> (41)
6,20
1<k<d
where 6, is the Dirac measure supported at 6y, i.e. &4 (f) = f(6y) for
an feC.
The main result of this section is the following one:
Theorem 4.1. Let {L;(s)} be an asymptotically very exact family of
L-functions. Then the limit py, = lim uy, exists. Moreover, iy, is a non-
j—oow

negative continuous function given by an absolutely and uniformly conver-
gent series:
wk
Utim () = 1 — ZkZ A cos(kx)g™ 2.
=1

Proof. The absolute and uniform convergence of the series follows
from the definition of an asymptotically very exact family. It is sufficient
to prove the convergence of measures on the space C[0, 7t].

Finite linear combinations of cos(nx) for n €N are dense in the space
of continuous functions C[0, 7], so it is enough to prove that for any
n=0,1,2,... we have:

JILH; v, (cos(nx)) = Uyim (cos(nx)). 4.2)
The Corollary 2.4 shows that:

d.
2 1 _wn
[y (cos(nx)) = q Z mp, cos(n@kj) =7 cos(n@kj) =—2MA;q 2
76420 J k=1
1<k<d;

for n#0 and ,uLj(l) = 1. Passing to the limit when j — © we get (4.2).
(I
Corollary 4.2. Let {{;(s)} be an asymptotically very exact family of

w,
zeta functions with &,, =1 and let r; be the order of zero of {;(s) at s = 7"'
Then
.0
lim = = 0.
j=ed;
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r:
Proof. Suppose that limsup = =¢ > 0. Taking a subsequence we

T Jj
. j . . .
can assume that lim = =¢. Taking a subsequence once again and using

e
Proposition 3.12 we can assume that we are working with an asymptot-
ically very exact sequence of L-functions {L ()} =ALy, ()} for which
the same property concerning r; holds.

By the previous theorem lim ;= uyip,. Let us take an even contin-

j—oow

uous non-negative function f(x) € C[0, ] with the support contained

T
in [0, %), where o= Zmax{j‘ulim(x) dx, 1} and such that f(0) =1. We
see that 0

e < limpy (FG) = [ FOOMmCO dx < 5,
e 0

so we get a contradiction. Thus the corollary is proven. O
Remark 4.3. It is easy to see that the same proof gives that the
multiplicity of the zero at any particular point of the critical line grows
asymptotically slower than d.
Remark 4.4. A thorough discussion of zero distribution results of
similar type and their applications to various arithmetical problems can
be found in [16].

4.2. Examples

Example 4.5 (Curves over finite fields). In the case of curves over
finite fields we recover the theorem 2.1 from [21]:

Corollary 4.6. For an asymptotically exact family {X;} of curves over
a finite field F, the limit uy, = }me Uy, is a continuous function given by

an absolutely and uniformly convergent series:

Ppxy () = 1= D) keprhy (x),
k=1

where
q*/? cos(kx) — 1

k4+1—2q"2cos(kx)"
Proof. This follows from Theorem 4.1 together with the following
series expansion:

hk(x) = q

S _ teos(kx)—1
lét cos(lkx) = t2+1—2tcos(kx)’

O
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Example 4.7 (Varieties over finite fields). We can not say much in
this case since the zero distribution Theorem 4.1 applies only to L-func-
tions. The only thing we get is that the multiplicity of zeroes on the line

Res=n— % divided by the sum of Betti numbers tends to zero (Corol-
lary 4.2).

Example 4.8 (Elliptic curves over function fields). Let us consider
first asymptotically bad families of elliptic curves. We have the following
corollary of Theorem 4.1.

Corollary 4.9. For an asymptotically bad family of elliptic curves {E;}
over function fields the zeroes of Lg,(s) become uniformly distributed on the
critical line when i — co.

This result in the particular case of elliptic curves over the fixed field
[F,(¢) was obtained in [14]. In fact, unlike us, Michel gives an estimate
for the difference ug, — ugg, in terms of the conductor ng . It would be
interesting to have such a bound in general.

Corollary 4.10. For an asymptotically very exact family of elliptic curves
{E;/K;} obtained by a base change the limit pg jx, = lhglo Ug,k, is a con-

tinuous function given by an absolutely and uniformly convergent series:

ak +ak

2 < U U
Uig, k(0O =1— P UZ); ¢u.sfd, k§ T cos(fd, kx).

Corollary 4.11. For a family of elliptic curves {E;/K;} obtained by a
base change

lim = = 0.
i—o &
Proof. By Proposition 3.18 any such family contains an asymptoti-
cally very exact subfamily so we can apply Corollary 4.2. O

Remark 4.12. For a fixed field K and elliptic curves over it a similar
statement can be deduced from the bounds in [1]. However, in the case
of the base change Brumer’s bounds do not imply corollary 4.2. It would
be interesting to see, what bounds one can get for the analytic ranks of
individual elliptic curves when we vary the ground field K. Getting such
a bound should be possible with a proper choice of a test function in the
explicit formulae.

5. Brauer—Siegel type results
5.1. Limit zeta functions and the Brauer—Siegel theorem

Our approach to the Brauer—Siegel type results will be based on
limit zeta functions.
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Definition 5.1. Let {{, (s)} be an asymptotically exact family of zeta
functions. Then the corresponding limit zeta function is defined as

® A
=0 3. 247"
f=1 f
Remark 5.2. If {(s)=C 7 (s) are associated to some arithmetic or
geometric objects f, we will denote the limit zeta function simply by
Ci ().
Here are the first elementary properties of limit zeta functions:
Proposition 5.3. 1) For an asymptotically exact family of zeta func-
tions {L (s)} the series for log {;m (s) is absolutely and uniformly convergent

on compacts in the domain Res > %, defining an analytic function there.

2) If a family is asymptotically very exact then () is continuous
for Res > %

Proof. The first part of the proposition obviously follows from Propo-
sition 3.5 together with Proposition 3.9.

By the definition of an asymptotically very exact family, the series

for log {1im (s) is uniformly and absolutely convergent for Re ys > % S0
defines a continuous function in this domain. Thus the second part is
proven. O

It is important to see to which extent limit zeta functions are the
limits of the corresponding zeta functions over finite fields. The question
is answered by the generalized Brauer—Siegel theorem. Before stating it
let us give one more definition.

Definition 5.4. For an asymptotically exact family of zeta functions
log §;c(s)

{l,(s)} we call the limit lim 7
k

k—

the Brauer—Siegel ratio of this

family.
Theorem 5.5 (The generalized Brauer—Siegel theorem). For any
asymptotically exact family of zeta functions {{; (s)} and any s with Res >

> —° we have

2
. log Z:e,k (S)
lllm ——=— =108 {1im($).
—00 k
If, moreover, 2Res &7, then
1
tim 2E2 — log (5.
. . " . W, w,+1
The convergence is uniform in any domain 5 Teé<Res<—5——¢ ¢€

<(0.3)
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Proof. To get the first statement we apply Proposition 3.9 and ex-
change the limit when k — « and the summation, which is legitimate
since the series in question are absolutely and uniformly convergent in a
small (but fixed) neighbourhood of s.

To get the second statement we apply Proposition 3.5, which gives us:

log §~n,k(s) —0

lim
k—w dy
Now the second part of the theorem follows from the first. O

Remark 5.6. It might be unclear, why we call such a statement the
Brauer—Siegel theorem. We will see below in Subsection 5.3 that the
above theorem indeed implies a natural analogue of the Brauer—Siegel
theorem for curves and varieties over finite fields. It is quite remarkable
that the proof of Theorem 5.5 is very easy (say, compared to the one in
[21]) once one gives proper definitions.

Remark 5.7. Let us sketch another way to prove the generalized
Brauer—Siegel theorem. It might seem unnecessarily complicated but it
has the advantage of being applicable in the number field case when
we no longer have the convergence of logL,(s) for Res > % We will
deal with L-functions to simplify the notation. The main idea is to prove
using Stark formula (Proposition 2.5 in the case of L-functions over finite

/

L
fields) that Lk—g; < C(e)d; for any s with Res > % + ¢. Then we apply the
k

Vitali theorem from complex analysis, which states that for a sequence of
bounded holomorphic functions in a domain & it is enough to check the
convergence at a set of points in 2 with a limit point in 2. This method
is applied to Dedekind zeta functions in [26].

Remark 5.8. It is natural to ask, what is the behaviour of limit zeta

or L-functions for Res < Le, Unfortunately nice properties of L-functions
such as the functional equation or the Riemann hypothesis do not hold
for Ly, (s). This can be seen already for families of zeta functions of
curves. The point is that the behaviour of Lj;,(s) might considerably

differ from that of lim logLi(s)

) P when we pass the critical line.
—00 k

5.2. Behaviour at the central point

It seems reasonable to ask, what is the relation between limit zeta
functions and the lirnitus} of zeta functions over finite fields on the critical
line (that is for Res = 7"). This relation seems to be rather complicated.
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1 £,.(/2)
d, $x(1/2)
families of curves (this can be seen from the functlonal equation), which
Cim(1/2)
Cim(1/2)°

However, the knowledge of this relation is important for some arith-
metic problems (see the example of elliptic surfaces in the next subsec-
tion). The general feeling is that for “most” families the statement of the

For example, one can prove that the limit hm is always 1 in

is definitely not true for the value

generalized Brauer—Siegel theorem holds for s = 2 There are very few
cases when we know it (see Section 7 for a discussion) and we, actually,
can not even formulate this statement as a conjecture, since it is not clear
what conditions on L-functions we should impose.

Still, in general one can prove the “easy” inequality. The term is bor-
rowed from the classical Brauer—Siegel theorem from the number field
case, where the upper bound is known unconditionally (and is easy to
prove) and the lower bound is not proven in general (one has to assume
either GRH or a certain normality condition on the number fields in
question). This analogy does not go too far though for in the classical
Brauer—Siegel theorem we work far from the critical line and here we
study the behaviour of zeta functions on the critical line itself.

Let {{,(s)} be an asymptotically exact family of zeta functions. We
define r, and ¢, using the Taylor series expansion

0=~ %) +o((5)'")

Theorem 5.9. For an asymptotically very exact family of zeta func-
tions {{, (s)} such that €y, =1 we have:

lim sup % Chm( )

k—
Proof. Replacing the family {{; (s)} by the family {{. ;(s)} we can
assume that w = w.
Let us write

Ci(s) = ck(s — %)rka(s),

where F (s) is an analytic function in the neighbourhood of s = % such

that Fk(%) =1.Letusputs= % + 6, where 6 > 0 is a small positive real
number. We have

w
log (% +0) _loge,log logF,(% +6)
d, i "4 .




176 Asymptotic properties of zeta functions over finite fields

To prove the theorem we will construct a sequence 6, such that
M@ L 1og ¢ (£ +6,) — log Cym( 2);
Ek 8Ck 2 k & Glim 2 )
2) i—k log 6, — 0;
dy
... 1 w
(3) liminf d:k IOng(E + Qk) =0.
For each natural number N we choose 0 (N) a decreasing sequence

such that

Clim(%) - Clim(% + 9(N))‘ < %

This is possible since {y;,(s) is continuous for Res = % by Proposi-
tion 5.3. Next, we choose a sequence k’(N) with the property:
1 w w 1
’d_k log (2 +6) ~log (2 + 9)‘ <o
for any 6 € [0 (N +1), 0(N)] and any k = k’(N). This is possible by The-
orem 5.5. Then we choose k”(N) such that
-1 log (N +1) < 6(N)
i W

for any k >k’ (N), which can be done thanks to corollary 4.2 that gives
us for an asymptotically very exact family ;—k — 0. Finally, we choose an
k

increasing sequence k(N) such that k(N) > max(k’(N), k”(N)) for any
N.

Now, if we define N =N (k) by the inequality k(N) <k <k(N +1)
and let 6, =0 (N (k)), then from the conditions imposed on 6, we auto-
matically get (1) and (2). The delicate point is (3). We apply the Stark

/
formula from Proposition 2.5 to get an estimate on (long(% + 9)) :
/

d%(loggk(%+9)—rklog9) _lzgq isidi—i-

k i=0

TR TP D S R S -
= i w ~ w :
dy i=o lL,»(G,»j)=0 5 T0-0;  dip,0,)=00,#% 5 +0 =0y
The first term on the right hand side is clearly bounded by —logq from

below. The first sum involving L-functions is also bounded by a constant
C; as can be seen applying the Stark formula to individual L-functions
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and then using Proposition 3.5. The last sum is non-negative. Thus, we
/
see that dé(long(% + 9)) = C for any small enough 6. From this and
Kk

from the fact that Fk(%) =1 we deduce that
1 w

This proves (3) as well as the theorem. O
Remark 5.10. In the case when ¢,, =—1 we get an analogous state-
ment with the opposite inequality.
Remark 5.11. The proof of the theorem shows the importance of
“low” zeroes of zeta functions (that is zeroes close to s = %) in the study

of the Brauer—Siegel ratio at s = % The lack of control of these zeroes

is the reason why we can not prove a lower bound on lim

k— o

log |c, |

d
Remark 5.12. If we restrict our attention to L-functions with inte-
gral coefficients (i. e. such that & (u) has integral coefficients), then we

glkl

can see that the ratio —=— is bounded from below by —w loggq, at least

for even w. This follows kfrorn a simple observation that if a polynomial
with integral coefficients has a non-zero positive value at an integer point
then this value is greater then or equal to one. One may ask whether
there is a lower bound for arbitrary w and whether anything similar
holds in the number field case.

5.3. Examples

Example 5.13 (Curves over finite fields). First of all, let us show
that the generalized Brauer—Siegel Theorem 5.5 implies the standard
Brauer—Siegel theorem for curves over finite fields from [21].

Let hy be the number of F-rational pints on the Jacobian of X, i.e.

hy =|Pic) (X)|.
q
Corollary 5.14. For an asymptotically exact family of curves {X;}
over a finite field F; we have:

loghy
hmi— logq-l—quflog

1—x 1

5.1

Proof. It is well known (cf. [23]) that for a curve X the number hy
can be expressed as hy = ¥%x (1), where ¥y (u) is the numerator of the
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zeta function of X (a polynomial in u). Using the functional equation for
{x (s) we see that loghy =logLy(0) =logLy (1) +glogqg.

The right hand side of (5.1) can be written as logq + 210g { (1),
where {x,(s) is the limit zeta function {yy, for the family of curves
{X;} (the factor 2 appears from the definition of log{ x3(8), in which
we divide by 2g and not by g). Thus, it is enough to prove that

~ loglL (1)
lim —5— =log ¢ ;) (1).
This follows immediately from the first equality of Theorem 5.5. O

Using nearly the same proof we can obtain one more statement
about the asymptotic behaviour of invariants of function fields. To for-
mulate it we will need to define the so called Euler—Kronecker constants
of a curve X (see [6]):

Definition 5.15. Let X be a curve over a finite field F; and let

() _
5);(5) =Gyl +ykG-D+riG -1 +...
be the Taylor series expansion of gi © at s=1. Then yy =779 is called

the Euler—Kronecker constant of X and }/’;(, k=1 are called the higher
Euler—Kronecker constants.
We also define the asymptotic Euler—Kronecker constants y’fx'} from:

o ®)
Lo (s)

¢ xy () is holomorphic and non-zero at s =1 so its logarithmic deriva-
tive has no pole at this point).

The following result generalizes theorem 2 from [6]:

Corollary 5.16. For an asymptotically exact family of curves {X;} we
have

Y({)Xi} + Y}Xi}(s -D+ Y%Xi}(s - 1)2 +...

k
169

; _ .k

Hm =% =7,

for any non-negative integer k. In particular,
. TYx Z ¢rflogg
lim—==— > ———.
i—o & =1 q -1

Proof. We apply the first equality from Theorem 5.5. Using the ex-
plicit expression for the negligible part of zetas as (1 —q~)(1—q'™),
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we see that logZ. ()
. 108
lim % log ¢ x (s)

i—o
k

for any s, such that Res >3 L ands #1 +ioza 27T , k €Z and the convergence

isuniformina<|s—1|< b for small enough a and b. We use the Cauchy
integral formula to get the statement of the corollary. O

Remark 5.17. It seems not completely uninteresting to study the be-
haviour of )/k “on the finite level”, i. e. to try to obtain bounds on )/’;( for
an individual curve X. This was done in [6] for yx. In the general case
the explicit version of the generalized Brauer—Siegel theorem from [13]
might be useful.

Remark 5.18. It is worth noting that the above corollaries describe
the relation between log {x (s) and log {x,(s) near the point s=1. The
original statement of Theorem 5.5 is stronger since it gives this relation

for all s with Res > %

Example 5.19 (Varieties over finite fields). Just as for curves, for
varieties over finite fields we can get similar corollaries concerning the
asymptotic behaviour of {x (s) close to s =d. We give just the statements,
since the proofs are nearly the same as before.

The following result is the Brauer—Siegel theorem for varieties proven
in [24].

Corollary 5.20. For an asymptotically exact family of varieties {X;}
of dimension n over a finite field ¥, we have:

Z ¢f108

. 10g|9C |
lim

{—©

where x; =Res;_q {x ().

In the next corollary we use the same definition of the Euler—Kro-
necker constants for varieties over finite fields as in the previous example
for curves:

Corollary 5.21. For an asymptotically exact family of varieties {X;}

of dimension n we have hrn )/’{‘X_} for any k. In particular,

b(X)

Tx, >, ¢sflogq
lim — —_—.
i—o b(X) 1 qfn -1

f:

Example 5.22 (Elliptic curves over function fields). Let us recall
first the Brauer—Siegel type conjectures for elliptic curves over function
fields due to Hindry—Pacheko [5] and Kunyavskii—Tsfasman [11].
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For an elliptic curve E/K, K =F,(X) we define ¢/ and rz/x from
Lgk(s) =cgx (s — 1)« +o0((s — 1)'#/x). The invariants r /x and cg/ are
important from the arithmetical point of view, since the geometric ana-
logue of the Birch and Swinnerton-Dyer conjecture predicts that rg i is
equal to the rank of the group of K-rational points of E/K and cgx can
be expressed via the order of the Shafarevich—Tate group, the covolume
of the Mordell—Weil lattice (the regulator) and some other quantities
related to E/K which are easier to control.

Conjecture 5.23 (Hindry—Pacheko). Let E; run through a family of
pairwise non-isomorphic elliptic curves over a fixed function field K. Then

L logled
i»w h(E) ’
where h(E;) is the logarithmic height of E;.

Remark 5.24. We could have divided log|cg, /x| by ng, in the state-
ment of the above conjecture since h(E;) and ng, have essentially the
same order of growth.

Conjecture 5.25 (Kunyavskii—Tsfasman). For a family of elliptic
curves {E;/K;} obtained by a base change we have:

|Ey (IFNUf)l
¢v,f log T

log g, /i |
_lim i /K — Z
1= 8ki vex,fz1

One can see that the above conjectures are both the statements of
the type considered in the Subsection 5.2. It is quite obvious for the
first conjecture and for the second conjecture we have to use the explicit
expression for the limit L-function:

1 - _ _
log Lig, /iy (8) = =577 ZJ;qu,f log(1— (a +al)Nv =/ + Np/(1=2),
v,

One can unify these two conjectures as follows:
Conjecture 5.26. For an asymptotically very exact family of elliptic
curves over function fields {E;/K;} we have:

. log |CEi/K,»|
llg{l.0 —a - log Lz, /3 (1),
where d; =ng +4gx. —4 is the degree of Ly x (s).
We are, however, sceptical about this conjecture holding for all fam-
ilies of elliptic curves. Theorems 5.5 and 5.9 imply the following result (a
particular case of which was stated in [25]) in the direction of the above

conjectures:
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Theorem 5.27. For an asymptotically very exact family of elliptic
curves {E;/K;} the following identity holds:
log L, /i, (5)
{— di

for Res>1. Moreover,

= ].OgL{Ei/Ki}(S),

lim w < log L/, (1).

Remark 5.28. If we consider split families of elliptic curves (i.e.
E;=E x X;, where E/F, is a fixed elliptic curve) then the proof of the-
orem 2.1 from [11] gives us that the question about the behaviour of
Lg,/x (s) at s=1 translates into the same question concerning the be-
haviour of { X, (s) on the critical line. For example, if the curve E is

supersingular, then Conjecture 5.26 holds if and only if
. 108|Cx,»(1/2)| 1
lim — = logC{Xi}(E)

{—o
(where (y. (%) is understood as the first non-zero coefficient of the Tay-

. . 1 .
lor series expansion of {y (s) at s= 5)- So, to prove the simplest case of
Conjecture 5.26 we have to understand the asymptotic behaviour of zeta
functions of curves over finite fields on the critical line.

6. Basic inequalities

The goal of this section is to prove various versions of the basic in-
equality which can be seen as a generalization of the Drinfeld—VIadut
inequality for the number of points on curves over finite fields. We will
start with the case of L-functions, where a little more can be said. Next,
we will prove a weaker result in the case of zeta functions.

6.1. Basic inequality for L-functions

Our goal here is to prove the following theorem, generalizing the
basic inequality from [20].

Theorem 6.1. Assume we have an asymptotically exact family {L;(s)}
of L-functions of weight w or an asymptotically exact family of zeta func-
tions {{;(s)} with {.;(s) being an L-function of weight w for any i. Then
for any b eN the following inequality holds:

b .
j w1
;(1-b+—1)1jq ;<3 6.1)
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Proof. Using Proposition 3.9 one immediately sees that it is enough
to prove the statement of the theorem for L-functions.

As in the proof for curves our main tool will be the so called Drinfeld
inequality. We take an L-function L(s) and let a; =q 2 p;, where p; are the
roots of £ (u), so that |a;| =1. For any a; we have

b . .
0<|a?+al +.  +1P=0b+D+ X b+1-)(a +a, ).
j=1

Thus

b . .
b+1= -2 (b+1-)(a +a ).
j=1

We sum the inequalities fori =1, ..., d. Since the coefficients of £ (u) are
d . d 4
real we note that 21 al = Z; a;’. From (3.1) we see that A; = —q"/ lel]
1= 1= 1=
Putting it together we get:

b wj
db+1) =22 (b+1-j)A;q 2.
j=1

Now, we let vary L;(s) so that d, — « and obtain the stated inequal-
ity. O
Unfortunately, we are unable to say anything more in general with-
out the knowledge of some additional properties of A ;. However, the next
corollary shows that sometimes we can do better.
Corollary 6.2. If a family {L,(s)} is asymptotically exact then

>

N

[ee] .
_w
2 A4 2 <
j=1

provided one of the following conditions holds:

1) either it is asymptotically very exact or

2) A; =0 for any j.

Proof. To prove the statement of the corollary under the first as-
sumption we choose an ¢ >0 and b’ €N such that the sum

0

_w
> Al <e.

j=b+1
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Taking b” > b, we apply the inequality from Theorem 6.1 with b=b". We
get:

7 . 7"

N =
WV
M=

-

S8

wj

j=b'+1

~.
Il
-

b

(-t - 3

j=b'+1

Jj )
1_b//+1‘llj|q P

Y
‘M

v ~ ‘
j _w
z El(l b”+1)7L 4 —E
Y u 1 .
We now let tend b” to 4w and get > A;q” 2 —& < 5. Then, passing to
j=1

the limit when b’ — o, we see that the first part of the corollary is true.
To prove the statement under the second condition we use the same

trick. We take b’ €N such that b’il
with b =05’ and notice that the sum only decreases when we drop the
b/

j T )
part j;l(l—m)%q 2 since A; > 0:

]_ b i Cw b . wj b L
27 Z( et = Y (1- g ) 2 21(1—8)qu B
=] 2

This gives the second part of the corollary. O

Corollary 6.3. Any asymptotically exact family of L-functions, satis-
fying A; =0 for any j, is asymptotically very exact.

Remark 6.4. The statements of both of the corollaries are obviously
still true if one assumes that A; > 0 for all but a finite number of j €N.

Remark 6.5. Using Theorem 4.1 one can give another proof of the
basic inequality for asymptotically very exact families of L-functions. In-
deed, all the measures defined by (4.1) are non-negative. Thus the limit
measure ;;,, must have a non-negative density at any point, in particular
at x =0. This gives us exactly the basic inequality. In this way we get an
interpretation of the difference between the right hand side and the left
hand side of the basic inequality as “the asymptotic number of zeroes of

L; (s), accumulating at s = 5

< ¢. Then we apply Theorem 6.1
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In fact, using the same reasoning as before, we get a family of in-
equalities (which are interesting when not all the coefficients A, are non-
negative):

Z Ay cos(kx)q™ < %
k=1
for any x €R.

6.2. Basic inequality for zeta functions

We have noticed before that even in the case of L-functions we do not
get complete results unless we assume that our family is asymptotically
very exact or all the coefficients A, are positive. While working with
zeta functions we face the same problem. However, we will deal with it
in a different way for no general lower bound on the sums of the type
(6.1) seems to be available and such a lower bound would definitely
be necessary since zeta functions are products of L-functions both in
positive and in negative powers.

Theorem 6.6. Let {{,(s)} be an asymptotically exact family of zeta

. ., W we+1
functions. Then for any real s with 76 <s< e2

—Z 1 Gim®) _ % 5;
Py 1/2 g < logq Lim(s) = = e’

or, more expllatly,

We 51‘
—qus,/z , ZM S22

Proof. First of all, Proposmon 3.9 implies that it is enough to prove
the inequality in the case when {; (s) = {x(s) and w = w,.
Let us write the Stark formula from Proposition 2.5:

1 06 _ <
logq (s) — Z quy—l
We notice that all the terms are real for real s and

reie
R(r,0) =Re T 0@ =

rcos@ —r?
1—2rcosf+r?"

Applying this relation we see that

/ w d; .
1 'Gs) _ Z e Z R(ql/z_s, eij)’
j=1

logq {() ~— &

_k g
where py;=q 2e%



6. Basic inequalities 185

For 0 <r <1 we have the bounds on R(r, 9):

1+ I R(r 9) r.
For e € {1} this implies
1 1
“1rve SERCOY S 7

From this we deduce that for s with % <s< wT+1 the following
inequality holds

106 d;
— < - . .
g " '/2 S Togg &) S Z 0a e ©2
. . . w w+1
The next step is to use Theorem 5.5. For any s in the interval (7’ T)
it gives that
-1 G &
lim = . = D> Aq >.
ko dplogq kG El 4

Dividing (6.2) by Ek, passing to the limit and using the previous equality
we get the statement of the theorem. O

Corollary 6.7. 1) If ¢, =1 and either the family is asymptotically
very exact or A; =0 for all j then

4] . We 6

Aqg 2 <Y ————
A D

2) If e, = —1 and either the family is asymptotically very exact or
A; <0 for all j then

w, [=<]
< 6;
- Z q(we /2 _ : g
Proof. Let us suppose that €, =1 (the other case is treated sim-

ilarly). For an asymptotlcally Very exact family for any € > 0 we can

choose N > 0 such that Z |A;lq™ ! < ¢. Thus both for a very exact

j>N
family and for a family with A4; > 0 for all j we have
N We 5.
—SJ R +e
Z: Z(:) ¢+

. w,+1 . .. w,
for any real s with e cgc et Passing to the limit when s — 7‘3 we

get the statement of the corollary. O
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Corollary 6.8. Any asymptotically exact family, such that
Eu, sign(kj) =1
for any j, is asymptotically very exact.
Remark 6.9. Though the Corollary 6.7 implies the Corollary 6.2, the

basic inequality for L-functions given by Theorem 6.1 is different from the
one obtained by application of Theorem 6.6.

6.3. Examples

Example 6.10 (Curves over finite fields). For curves over finite fields
we obtain once again the classical basic inequality from [20]:

- m¢m
ZZAqZ_Z m/2

Of course, this is not an interesting example for us, since we used this
inequality as our initial motivation.

Example 6.11 (Varieties over finite fields). In a similar way, for va-
rieties over finite fields we get the inequality from [12, (8.8)]:

- mo, (2d-1)/2 _ /51 B: B
mZ::1 q@d-Dm/2 _1 <(q Ly +Z qD2 41 +22h‘: g2 _1 )

With more efforts one can reprove most (if not all) of the inequalities
from [12, (8.8)] in our general context of zeta functions, since the main
tools used in [12] are the explicit formulae. However, we do not do it
here as for the moment we are unable see any applications it might have
to particular examples of zeta functions.

Example 6.12 (Elliptic curves over function fields). The case of
asymptotically bad families is trivial: we do not obtain any interesting
results here since all A;=0.

Let us consider the base change case. Let us take an asymptotically
very exact family of elliptic curves obtained by a base change (by Propo-
sition 3.18 any family obtained by a base change is asymptotically very
exact, prov1ded charF, #2, 3). We can apply Corollary 6.2 to obtain that

Z Aiq™! /2 < - Using (3.3), one can rewrite it using ¢, ,, as follows:

j=1

mdvd)v,m (avm + (—xvm)q—mdu < v+4
1—(a;”+d;“)q’mdv =2

2

(here v =lim —— LT —).

i—o0 K;
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7. Open questions and further research directions

In this section we would like to gather together the questions which
naturally arise in the connection with the previous sections. Let us start
with some general questions. First of all:

Question 7.1. To which extent the formal zeta and L-functions de-
fined in Section 2 come from geometry?

One can make it precise in several ways. For example, it is possible
to ask whether any L-function of weight w, such that ¢ (u) has integral
coefficients is indeed the characteristic polynomial of the Frobenius au-
tomorphism acting on the w-th cohomology group of some variety V /.
A partial answer to this question when w =1 is provided by the Honda—
Tate theorem on abelian varieties [19].

Question 7.2. Describe the set {(1;, A4, ...)} for asymptotically ex-
act (very exact) families of zeta functions (L-functions).

There are definitely some restrictions on this set, namely those given
by various basic inequalities (Theorems 6.1 and 6.6, Remark 6.5). It
would be interesting to see whether there are any others. We emphasize
that the problem is not of arithmetic nature since we do not assume
that the coefficients of polynomials, corresponding to L-functions, are
integral. It would be interesting to see what additional restrictions the
integrality condition on the coefficients of £ (u) might give. Note that,
using geometric constructions, Tsfasman and Vladut [21] proved that the
sets of parameters A, satisfying A, > 0 for any f and the basic inequality
are all realized when q is a square and w = 1. This implies the same
statement for L-functions with arbitrary ¢ and w. However, our new
L-function might no longer have integral coefficients.

Question 7.3. How many asymptotically good (very good) families
are there among all asymptotically exact (very exact) families?

The “how many” part of the question should definitely be made more
precise. One way to do this is to consider the set V, of the vectors of
coefficients of polynomials corresponding to L-functions of degree d and
its subset V;(f, a, b) consisting of the vectors of coefficients of polyno-

mials corresponding to L-functions with a < % <b. A natural question
is whether the ratio of the volume of V;(f, a, b) to the volume of V, has
a limit when d — o« and what this limit is. See [2] for some information
about V. The question is partly justified by the fact that it is difficult
to construct asymptotically good families of curves. We would definitely
like to know why.
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Let us now ask some questions concerning the concrete results on
zeta and L-functions proven in the previous sections.

Question 7.4. Is it true that the generalized Brauer—Siegel Theo-
rem 5.5 holds on the critical line for some (most) asymptotically very
exact families?

It is sure that without the additional arithmetic conditions on the
family the statement does not hold. The most interesting families here
are the families of elliptic curves over function fields considered in Sub-
section 5.3 due to the arithmetic applications. An example of a family
of elliptic surfaces for which the statement holds is given in [5]. It is
interesting to look at some other particular examples of families of curves
over finite fields where the corresponding zeta functions are more or less
explicitly known. These include the Fermat curves [10] and the Jacobi
curves [9].

Some examples we know to support the positive answer to the above
question come from the number field case. It is known that there exists

a sequence {d;} in N of density at least % such that

l0g ¢y ( %)
leoo logd; =0
(cf. [8]). The techniques of the evaluation of mollified moments of Dirich-
let L-functions used in that paper is rather involved. It would be inter-
esting to know whether one can obtain analogous results in the function
field case. The related questions in the function field case are studied
in [10]. It is not clear whether the results on the one level densities for
zeroes obtained there can be applied to the question of finding a lower
log|c;]|

d;
ber field and in the function field cases).

Question 7.5. Prove the generalized Brauer—Siegel Theorem 5.5
with an explicit error term.

This was done for curves over finite fields in [13] and looks quite
feasible in general. It is also worth looking at particular applications that
such a result might have, in particular one may ask what bounds on the
Euler—Kronecker constants it gives.

Question 7.6. How to characterize measures corresponding to asymp-
totically very exact families?

This was done in [21] for families such that Af =0 for all f. The
general case remains open.

bound on for some positive proportion of fields (both in the num-
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Question 7.7. Estimate the error term in Theorem 4.1.

As it was mentioned before, in the case of elliptic curves over Fg (0
the estimates were carried out in [14].

Question 7.8. Find explicit bounds on the orders of zeroes of L-func-
tions on the line Res= 2.

The Corollary 4.2 gives that the ratio i

d;
exact families (here r; is the multiplicity of the zero). In a particular case of
elliptic curves over a fixed function field Brumer in [1] gives a bound which
grows asymptotically slower than the conductor. Using explicit formulae
with a proper choice of test functions, it should be possible to give such
upper bounds for families obtained by a base change if not in general.

Let us finally ask a few more general questions.

Question 7.9. How can one apply the results of this paper to get the
information about the arithmetic or geometric properties of the objects
to which L-functions are associated?

We carried out this task (to a certain extent) in the case of curves
and varieties over finite fields and elliptic curves over function fields.
Additional examples are more than welcome.

The last but not least:

Question 7.10. What are the number field analogues of the results
obtained in this paper?

It seems that most of the results can be generalized to the frame-
work of the Selberg class (as described, for example, in [7, Chapter 5]),
subject to imposing some additional hypothesis (such as the Generalized
Riemann Hypothesis, the Generalized Ramanujan Conjectures, etc.). Of
course, one will have to overcome quite a lot of analytical difficulties on
the way (compare, for example, [21] and [22]).

We hope to return to this interesting and promising subject later on.

— 0 for asymptotically very
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Uniform distribution of zeroes of L-functions
of modular forms

Abstract. We prove under GRH that zeros of L-functions of modu-
lar forms of level N and weight k become uniformly distributed on the
critical line when N +k — .

1. Introduction

It is well known that zeroes of L-functions contain an important in-
formation about the arithmetic properties of the objects to which these
L-functions are associated. The question about the distribution of these
zeroes on the critical line was studied by many authors. This problem
can be looked upon from many angles (the proportion of zeroes on the
critical line, low zeroes, zero spacing, etc.).

In this paper we study the distribution of zeroes of L-functions on the
critical line when we let vary the modular form to which the L-function
is associated. The same question was considered by S.Lang in [4] and
M. Tsfasman and S. Vladut in [8] for the Dedekind zeta function of num-
ber fields.

Let f(2) be a holomorphic cusp of weight k =k, for the group I'y(N)

such that f(z) = > a,n*~/227"= ig jts normalized Fourier expansion
n=1
at the cusp ». We suppose that f(z) is a primitive form in the sense of
Atkin—Lehner [1] (it is a new form and a normalized eigen form for all
Hecke operators), so L;(s) can be defined by the Euler product
Le) =T1A-a,p™ ' [TA—a,p~+p™>)7"
pIN PN
We denote by a, and a, the two conjugate roots of the polynomial
1—a,p™+ p~%. Deligne has shown (see [2]) that la,| =1]a,|=1 for
ptN (the Ramanujan—Peterson conjecture). On the other hand, one
knows (see [1]) that for p | N we have |ap| <1.
If we define the gamma factor by
_ s+(k—-1)/2 s+(k+1)/2 _ k—1
/(0 = e (TR = qem (s + £5)

Alexey Zykin, Uniform distribution of zeroes of L-functions of modular forms, in: Al-
gorithmic arithmetic, geometry, and coding theory, Contemporary Mathematics, vol. 637,
Amer. Math. Soc., Providence, RI, 2015, 295—299.
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with ¢, = 26-0/2 /7 then the function A(s) = Ns/zyf (s)Ls(s) is entire
and satisfies the functional equation A(s) =wA(1 —s) with w ==1. The
Generalized Riemann Hypothesis (GRH) for L-function of modular forms
states that all the non-trivial zeroes of these L-functions lie on the critical
line Res= % Throughout the paper we assume that GRH is true.
The analytic conductor q 7 (see [3]) is defined as
2
a = N(*57 +3)(557 +3) ~
when k — . We will use the last expression (or, more precisely, its log-
arithm minus a constant) as a weight in all the zero sums in the paper.
To each f(z) we can associate the measure

27
= Or(r)s
f logq, Lf%::() t(p)

where t(p) = %(p — %) and p runs through all non-trivial zeroes of
L¢ (s); here 6, denotes the atomic (Dirac) measure at a. Since we suppose
that GRH is true, Ay is a discrete measure on R. Moreover, it can easily
be seen that A 7 is a measure of slow growth (see below).

Our main result is the following one:

Theorem 1.1. Assuming GRH, for any family {f;j(z)} of primitive
forms with q [ the limit

A =1lim A

j—oo

j = Hm A,
exists in the space of measures of slow growth on R and is equal to the

measure with density 1 (i. e. dx).

2. Proof of Theorem 1.1

Our method of the proof will, roughly speaking, follow that of [8],
where a similar question is treated in the case of Dedekind zeta functions.
It will even be simplier in our case due to the fact that the family we
consider is “asymptotically bad”.

Let us recall a few facts and definitions from the theory of distribu-
tion. We will use [7] as our main reference. Recall that the Schwartz
space & =& (R) is the space of all real valued infinitely differentiable
rapidly decreasing functions on R (i.e. ¢ (x) and any its derivative go
to 0 when |x| — « faster then any power of |x|). The space 2(R) is de-
fined to be the space of all real valued infinitely differentiable functions
with compact support on R. Both . (R) and 2 (R) are equipped with the
structures of topological vector spaces.
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The space 2’ (resp. &’), topologically dual to 2 (resp. &) is called
the space of distribution (resp. tempered distributions). We also define
the space of measures .# as the topological dual of the space of real
valued continuous functions with compact support on R. The space .#
contains a cone of positive measures .#_, i. e. of measures taking positive
values on positive functions. One has the following inclusions: &’ C 2’
and A, C 4 C 9. The intersection Ay =.# NS’ is called the space
of measures of slow growth. A measure u of slow growth can be charac-
terized by the property that for some positive integer k the integral

4o
J >+ u
converges (see [7, Thm. VII of Ch. VII]). In particular, from this criterion
and the fact that the series Z |p|‘2 converges ([3, Lemma 5.5]), we
p#0,1
see that A is a measure of slow growth for any f.
Finally, we note that the Fourier transform "is defined on % and
&’ and is a topological automorphism on these spaces. 2 is known to
be dense in & and so 9 is also dense in & =.&. To check that u is a
measure of slow growth it is enough to check that it is defined on a dense
subset and that it is continuous on this dense subset in the topology
of &. In the same way, to check that a sequence of measures of slow
growth converges to a measure of slow growth it is enough to check its
convergence on a dense subset to a measure continuous on this dense
subset. This follows from the definition of measures as linear functionals.
Our main tool will be a version of Weil explicit formula for L-func-
tions of modular forms proven in [6, 1.2] or in [3, Theorem 5.12] (in the
last source some extra conditions on test functions are imposed).
Suppose F € & (R) satisfies for some ¢ >0 the following condition

|F ()|, |[F (x| < ce(_%ﬂ)‘x| as |x| — . .1

Let
o(s) = [ Feoel ™3 = F oo,
0
where s = 1 +it. The next proposition gives us the explicit formula that

we need to relate the sum over zeroes to the sum of coefficient of mod-
ular forms:
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Proposition 2.1. Let f(2) be a primitive form of level N and weight k.
Then the limit

> d(p) = hm > @(p)
Ly(p)=0 “ L (p)=0
|p|<T

exists and we have the following formula:

>, o(p) = Zb(p’")(F(mlongF( mlogp)) m/z

L¢(p)=0
1 1
+F(0)(logN —2log(2m)) + = J ( +lf):¢(2 ) ¢(§+it)dt,

where v (s)=T"(s)/T'(s), b(p™) =(a,)™ if p[N and b(p™) = (a,)" +(&,)™
otherwise.
Taking a subsequence of {f;} we can assume that the limit
o logN;
a= }I_I)?o logN; +logk;

exists. We will check the convergence of measures on 9. From the abov;e
discussion this is enough to prove the result. Let us take any ¢ € 2,
¢ =F, Fe 9. We have o) = @(% + it). The function F satisfies the
condition (2.1), so we can apply the explicit formula to it. We fix ¢ (t)
and let vary f; Then, we get the equality when j — .

+oo Y 4i
_ p+ocn  W(F+i)
A(p) =2nF(0)a+2 J 2 ]h_I,I; logN; +logk;

dt, 2.2)

since |b(p™)| <2 and the integral is uniformly convergent as ¢ (t) € <.
The limit under the integral sign can be evaluated using the Stirling

formula v (s) =logs + O(| |) (see [5, p.332]). This gives us

ki
lim 1/)(2+lf) l(1 a).

j—o logN; +logk; —
But j Y (t)dt=27F(0) and so the right hand side of (2.2) equals
+ o0

2nF(0)a+27F(0)(1—a) = 21F(0) = j ¢ (O)dt.

This concludes the proof of the theorem. O
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Corollary 2.2. Any fixed interval around s = % contains zeroes of
L (s) if qy is sufficiently large.

Remark 2.3. One can prove a similar equidistribution statement for
L-functions of bounded degree in the Selberg class, assuming suitable
conjectures (like the Generalized Riemann Hypothesis). It is an interest-
ing question how zeroes of L-functions are distributed if the degree of
these L-functions grows with the analytic conductor. Some examples of
non-trivial distributions of zeroes for Dedekind zeta functions are con-
sidered in [8].
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On the number of rational points of Jacobians
over finite fields

(whith P. Lebacque)

Abstract. We prove lower and upper bounds for the class numbers
of algebraic curves defined over finite fields. These bounds turn out
to be better than most of the previously known bounds obtained us-
ing combinatorics. The methods used in the proof are essentially those
from the explicit asymptotic theory of global fields. We thus provide a
concrete application of effective results from the asymptotic theory of
global fields and their zeta functions.

1. Introduction
1.1. Notation

We introduce the following notation:

X a smooth projective absolutely irreducible curve over F,
g the genus of X,
K the function field of X,

&, or By the number of places of K of degree f,
the class number of X (the number of IF,-points of Jac(X)),

Zx(T) the zeta function of X which is a rational function of T,
w;+/q the inverse roots of the numerator of Z (T),

K the residue of Z,(q*) ={x(s) ats=1,

log the Neperian logarithm log, .

By a curve we always mean a smooth projective absolutely irreducible
curve.

1.2. Existing lower bounds for the class number

Our goal is to provide estimates for the number of rational points on
the Jacobian of a smooth projective curve that use the information on the
number of points on this curve defined over I or over its extensions. The

Philippe Lebacque, Alexey Zykin, On the number of rational points of Jacobians over
finite fields, Acta Arithmetica, 169 (2015), no.4, 373—384.



198 Jacobians over finite fields

starting point for all such estimates is the interpretation of the class num-
ber as the value at 1 of the numerator of the zeta function of the curve.
In order to estimate it, one uses properties of the zeta function such as
its functional equation, and the Riemann Hypothesis (Weil bounds).

From the work of Weil, we know that the class number h of a smooth
projective absolutely irreducible curve X of genus g defined over F is
bounded as follows:

(VI—D*® <h < (/g+1D*.
Considerable effort has been devoted to sharpening these bounds. Let
us cite some work in this direction. Lachaud and Martin-Deschamps [5]
first obtained the lower bound
-1 (q - 1)2
@+D(E+1)’
using a formula which is a consequence of the functional equation for
the zeta function:

h=hpup = q®

g-1 g2
2 A+ 2 ¢4,
h _ n=0 n=0
= z ,

D1 — /gl

i=1

where A, is the number of effective divisors of degree n on X. Ever
since, methods from combinatorics were used to give good bounds for
the numerator and the denominator of this fraction.

In [2], [3], Ballet, Rolland, and Tutdere used this approach in order
to prove rather elaborate lower bounds on h. Some of these bounds turn
out to be asymptotically optimal when g — %, meaning that they con-
verge to the lower bound from the generalized Brauer—Siegel theorem
for function fields ([9], see also Remark 2.8). The best of their lower
bounds is given by the following theorem:

Theorem 1.1 (Ballet—Rolland—Tutdere). Let X /Fq be a curve de-
fined over ¥, of genus g = 2 and of class number h. Let Dy, D, be finite sets
of integers, ({,),ep,, (M.).cp, be families of integers such that:

1) D, <A{1,...,g—1};

2) D, <{1,...,g—2};

3) for any r€D,, &4 2 1;

4) for any r€D,, &, 2 1;

510>0and > rl,<g-1;

reD,
6) m,=0and > rm.<g—2.

reD,
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Then h = hgpr with

_ (q — 1)2 éq" +Er
hBRT—(g+1)(q+1)—¢q(n( )t

reD, r

r bqr q" o
d Sy +m, @ -0
rae 1] [(qr_l) —%-( i, )jwdtD
0

reD,

From now on we denote by hgr the best possible lower bound from
this theorem, that is, the one with an optimal choice of Dy, D,, (£,)¢p,,
and (m,),p, -

In a recent article dealing with estimates for the number of points
on general abelian varieties, Aubry, Haloui, and Lauchaud [1] obtained
certain lower bounds on class numbers that can be very sharp when
the curve in question has many rational points compared to its genus.
However, these bounds are all rather poor from the asymptotic point of
view when g — . Let us recall their results concerning the Jacobian of
curves.

Theorem 1.2 (Aubry—Haloui—Lachaud). For a smooth absolutely ir-
reducible projective curve X defined over F, of genus g = 2 and of class

number h we have:
o, —(@+DN\¢ |
1D h?M(q)g(q+1+T) with

elogx?/*~1 JI+1)?
M(q)——xl/x_1 o x={5o1)
q-1[ro,+2g—2y %' (o, +2g-2-r
> r .
2 hz 2] (] J+ 5 oM

DIfe,z2g(y/q—D+1 then

> ()75

(-1 B, +g-2Y\ &S 1B, 4r—1
4)h>(g+1)(q+1)—¢q[( o2 )+r§)qg (7))

We denote by h 41, the best possible lower bound for h given by (1)—
(4) of this theorem. We remark that the estimate (3) can be very sharp
when g is small and &, is large. We will come back to that in § 3.
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1.3. The aim of this paper is to show how the Mertens theorem
and the explicit Brauer—Siegel theorem lead to improvements of these
bounds in many cases, most notably when g is large. This is done in § 2
(Corollary 2.5). To do so we use the asymptotic theory of global fields,
and more precisely the technique of explicit formulae. The third section
is devoted to numerical experiments. We compare the bounds in several
examples provided by recursive asymptotically good towers of function
fields. Finally, in the fourth section we discuss further research directions
and open problems.

2. Explicit formulae and their link to class numbers
2.1. Explicit formulae

Our starting point is the Mertens theorem [6] for curves and its re-
lation to the generalized Brauer—Siegel theorem. Our exposition differs
slightly from [6]: we take the opportunity to sharpen (and sometimes
correct) the corresponding bounds.

Let us recall Serre’s explicit formulae from [8].

Theorem 2.1 (Explicit formula). For any sequence (v,) such that
the radius of convergence p of the series . v,t" is strictly positive, define

Yo O = D5 Upnt™, and 2, () =1, (). Then for t < q 'p, we have the
n=1

explicit formula

o 28
Z f“quwf,v = wv(t) +¢v(qt) - Z wv(\/qwjt)'
f=1 j=1

We choose N €N, and take v, =1/n if n <N and 0 otherwise. Apply-
ing Theorem 2.1 with t =q !, we obtain the identity

So(N) = §;(N) + S,(N) + S3(N),

where

N
SolN) = zn " Bmege = X 2 XE)

min f=1

N

28 N
$1(N) = z% SN = 3 ah S =3 X Ag o
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We transform it in order to make the desired quantities appear. For

any N >1,
N ¢
1) o) -

= Sl+82—10g%+10g%+
~—_————
& (N)

N <
- QSqflog(qf_

f=1

Eo(N)

S3 —log(klogq) +log qul +log(xlogq) —log %.

93(N)

To get bounds for h we will not need estimates on &,(N) and &,(N),
but they are useful for proving the Mertens theorem recalled later.
Lemma 2.2. We have the following bounds for €;(N):

c1(q) c,(q)g

_NqN/Z Nq3N/4 S £

g (N) <

2g

1
¥ Sl <0 0<leMl< (VT— DN +1)g"/?’

T (@-DWIN+1g

with

29(q+1) 5 7 3/2
a@=2TD <12 and o) = 2 Fr+ o) <20

Proof. The following inequalities hold for |x|>1 and N > 0:

log[ =X ) 3 L
08 x—1 = nx

- 1
an”

n=N+1

(NJrl)IXIN*1 Z 4 Tx| S

1
= (VDN (x| -

This implies the bounds for &, (N).
The one for &5(N) is derived from the classical formula [9, Corol-
lary 3.1.13]

log(xlogq) —log— Z log(l - ﬁ)
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It gives

les(N)| = ‘ Z Z (q wj)”—log(Klogq)+logqu1. =

j=1ln=

2(-e(1-5)- 237

and since |w;| = 1, we have

2g

1 28
N)| < < '
le3 (V) El N+ DV 1vVa-;]  (JT-DWN+1)g"?

We finally estimate &,(N) along the lines of [6, proof of Lemma 2].
We first transform the expression for Sy:

N [N/f] N [N/f] 1
SoN) = X fogr 2, ¢ "(fm) ™ = X 8y D
=1 m=1 f=1  m=1 &M

Thus,

go(N) = So(N) — > P, log ——=— 95(10 a )
o(N) = So(N) fgl ¢ 108 T fgl s\ -1 mo1 @'m

1

21 ey @

1 1
i S
As = < IN/f] 1,weget

N
¢qf

0< —g(N) < f; (IN/f1+ DN (g — 1)

q/ +1+2gq’?

7 . Thus

To estimate sﬁqf we use d>q F<

< —gy(N) < Z 4 +1+2g 2
0 =N " (qf — g/
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We split the last sum in two, using the fact that for f > [N /2] we have
[N/f1=1, and for f <[N/2] we have f[N/f]>N — f:

10N ¢ +142g¢ 1 & ¢/ 14292

—g(N) S © D) 5 = ——>— <
N f=1 qN f(qf_l) Nf:[N/2]+1 qf(qf_]-)

[N/2] ¢ N f

1( g1 ey ¢/ +1 _f)

S N q + EI q +
F=IN/2]+1 -1

zg([N/Z] qf fj2-N N qf _3f/2
i o DM M D Ve Tl B
AR fevgoer @1

q+1 [N/2] f—N N —f
S (q—l)N( Z q + Z q )+

f=1 F=IN/2+1

29 (" gon, S s
+N(q—1)( 2 q + 2 g ) S
f=1 f=IN/2]+1
(q+1)(q—[N/2]—1 +q—N+[N/2]) 2gq q—N+[N/2]/2 q—3([N/2]+1)/2
@-DNO—-q D +N(q—1)( =g 2 T 1_gon )
_2q+Dg 1 29 ( va ¢ g O
= (g-1)2 NgV2 T q—-1\ yg-1" g¥2—1 JNg 3N/

Remark 2.3. The bound for ¢y,(IN) provides a correction to
[6, Lemma 2], and the bound for €5(N) corrects Lemma 5 there. It can
be easily checked that these bounds are also valid in the more general
situation of varieties over finite fields treated in [6].

2.2. Bounds for the class number

Using the calculations from the previous section and applying the

class number formula
hq'~¢
q-1’

klogq =

we get the following theorem.

Theorem 2.4. Let X be a smooth projective absolutely irreducible
curve defined over ¥, of class number h. Then h is given by the following
formula valid for any N = 1:

N 1 N 1+q—n
logh = glogq+ >, FIX(Iqu)I—Z - —&3(N),
f=174

n=1
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or equivalently,

N N/l N o14q
logh = glogq + Z(¢qr > ﬁ)—z —— —&3(N),
r=1 f=1 14 n=1
2g
(VT— DN +1)g"?
Corollary 2.5 (Bounds for the class number). The number of ratio-
nal points h on the Jacobian of X satisfies hp;,(N) < h<h,(N), where

where &5 (N) satisfies |e5(N)| <

N o1 N 1+4q™" 2g
. = g8 — — _
o (N) = ¢ eXp(Zzl 77 X o) ,Z:l n (ﬁ—l)(N+1)qN/2)’
N N 14qm 2g
— 48 L _
hmaX(N) q eXp(fgl qu |X(qu)| ngl n + (ﬁ—l)(N+1)qN/2)

Remark 2.6. The knowledge of a given (small) number of Dys’s al-
lows us, nevertheless, to apply Corollary 2.5 for any N. For example, in
the case of lower bounds, one can bound from below the unknown &«
by 0, or by the quantities arising from the Weil bounds, depending on
which one is better. We thus get a family of bounds parametrized by N,
and we can choose the best one.

2.3. Mertens theorem and class numbers

Putting together estimates from Section 2.1, we find once again:
Theorem 2.7 (Mertens theorem [6]). Let X be a smooth projective
absolutely irreducible curve of genus g defined over F,. Then

u ¢ N1
f_1¢>qf log(qf _1) = log(x logq) — &9(N) + &, (N) + &5(N) —ngl o

For any N = 1, we can deduce from this a weaker form of our bound,
which might be easier to compare to Ballet—Rolland—Tutdere’s bound:

n=1

N qf N 1+q—n
logh:glogq—i-[fz ¢qflog(qf_1)]—z ——+eo(N) — 3 ().
=1

Remark 2.8. Theorem 2.7 implies that our bounds on h are asymp-
totically optimal. More precisely, recall that a family of curves {X;} over
I, of genus g; — o is asymptotically exact if the limits

b (X))
¢y = lim =

i—o &
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exist for all r. For asymptotically exact families of curves the generalized
Brauer—Siegel theorem [9] states that

logh(X;) & q
—e —logq+ 2 oy log(qr—_l)-
t r=1

We see that when g; — « and then N — o, the bounds h,;,(N) and
h,,.x (N) from Corollary 2.5 divided by g; converge to the right hand side
of the above equality.

lim

i—

3. Numerical computations

In this section, we compare the lower bound h,;,,(N) given by The-
orem 2.4 with hgrp and h,yyp, in the situation of recursive towers. We
denote by h;, the bound from Theorem 2.4 for the optimal choice of
N. Such a number N is found by computer-aided calculations where the
missing information on the number of points on a curve X over Fyr is
obtained either from the inequality X (Fgr) Z X (Fga) when d |r, or from
Serre’s bound X(Fg:) = q" +1— gl2q"'?], depending on which one is
more precise. We follow closely [3, Section 5].

Recall that a tower of function fields over I, is an infinite sequence
{F/Fy}ren of function fields such that for all k the ground field I, is
algebraically closed in F, F, C F;,, and the genus satisfies g(F;) — .
A recursive tower is a tower {F;} of function fields over Fq such that
Fy=T,(xo) is a rational function field and F; = Fi (x;1) where x4
satisfy the equation f(xy, x;,,;) =0 for a given polynomial f(X,Y) in
F,[X,Y].

3.1. The first tower of Garcia—Stichtenoth

Assume that q" is a square, and consider the tower {H;} = /T,
defined recursively by the polynomial

r/2 r/2—1

FOGY) =7 x0T 4y - x1" e F X, V).

We also consider the recursive tower {F,.} =%/ Fq of function fields de-
fined by the same polynomial starting with the rational function field
4 (xo). The base change of Fy to Iy gives Hy.

We compare the numerical estimates from [3, Section 5.1] with what
we obtain using our bound h; ;. We take ¢ =2, r =2 and consider the
fields H,, H3, and H,. Note an error in [3, Section 5.1] where for k=3
the genus is erroneously taken to be equal to 14 instead of 13 (this was
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pointed out by Julia Pieltant). Recall that B, (H;) denotes the number of
[F,4-points of the curve corresponding to Hy.

Stepk  g(H) By(Hy) hgrr hanL hiz N
2 5 16 7434 12240 9230 10
3 13 30 16911279581 16271525520 26 274 427 880 33
4 33 56 1.43 x 10%° 0.075 x 10%° 4.149x10%° 83

Here is a similar comparison for ¢ =2 and the tower & with B, (F,)
and B,(F,) denoting respectively the number of F,- and F,-rational
points of the curve corresponding to Fy:

Step k g(Fk) B, (Fk) Bz(Fk) hBRT hLZ N
2 5 2 7 7 30 12
3 13 2 14 10453 42898 26
4 33 2 27 343733443 618 1543267494985 74

We notice that our bound is better than the other ones except for
the case of H,/FF, where we cannot beat h,y;,. The situation changes,
however, if we use some additional information on the places of H,/TF,.
Namely, one can calculate that B,(H,) =0 and B;(H,) =24. These val-
ues give the bound h; ; =13 430 reached for N =11. Using MAGMA we
calculated that the exact value of the class number is 16200.

3.2. The tower of Bassa—Garcia—Stichtenoth

Consider the tower {H;} = 5 /F, defined recursively by the poly-
nomial

X941

FOLY) = (V=) 14 e

€F,[X,Y],

and let {F,} =% /IE‘q be the same recursive tower over F,. We have the
following numerical estimates for the class numbers when q =2, that is,
over Fg for Hy and over I, for Fy. The value of hgg bound is taken from
[3, Section 5.1].

Stepk  g(Hr) By(Hy) hgrr hyz N
2 5 24 125 537 126 832 9
3 13 48 2.556x 101 4.039x 1013 29

4 29 96 2.010x10%° 5.778x10%° 11
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Stepk  g(F)  Bs(F) hgrr hyz N
2 5 8 3 3 5
3 13 16 771 1623 19
4 29 32 212127 395 751622136 61

3.3. Composite towers

The next example is the composite tower {E;/F,.} constructed in
[4]. It is obtained as a composite of the tower of Garcia and Stichtenoth
from Section 3.1 with a certain explicitly given function field. The details
can be found in [3, Proposition 5.11]. The following table combines the
estimates for g2 =4:

Step k g(Ek) Bl (Ek) Bz (Ek) B3 (Ek) hBRT hLZ N
2 55 1 12 12 3.657x10%1  2355x10%' 14
3 132 1 24 24 9.198 x1077  121.02x 1077 15

For two other composite towers {E;. /F,} and {E;{ /Fg} this time based
on the tower from Section 3.2 (see [3, Proposition 5.17] for a detailed
description), we get the following numerical data:

Step k g(Ek) B3 (Ek) Bﬁ(Ek) hBRT hLZ N
2 17 16 8 10 254 27563 30
3 49 32 16 1.718 x 10 9.173x 10 94
Stepk  g(E) Bi(E) By(E) hgrr hiz N
2 17 48 24 1.002x 107  2.304x10Y 35
3 49 96 48 2.426x10%  13.08x10* 10

One more composite tower E;/F, introduced in [10] (see also [3,
Proposition 5.18]) gives us the following table:

Step k g(Ek) B1 (Ek) Bz (Ek) B3 (Ek) hBRT hLZ N
2 30 1 9 9 4.625x 101  18.3290x 101 52
3 89 1 27 27 2.236x10°2  21.39x 102 16

For the composite tower E; /F, from [3, Proposition 5.20] we obtain:

Step k g(Ek) B, (Ek) BZ(Ek) hBRT hLZ N

2 15 36 4 8.563x10'* 18.76x10' 30
3 46 72 8 7.470 x 10*  41.64x10* 10
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Finally, for yet another composite tower E;/F, from [3, Proposi-
tion 5.22] we get:

Step k g(Ek) Bl (Ek) BZ(Ek) hBRT hLZ N
2 25 36 9 1.415x10'®  3.835x10'® 56
3 124 108 27 3.501x10%  36.23x10% 16

In all these examples with one exception we manage to improve on
the previously known bounds.

4. Open questions

Several natural questions arise in connection with the bounds ob-
tained in this paper.
Question 4.1. Is it possible to compare the bounds hgpy, hapr,, and
N

hy,?

We would like to have a more or less explicit description of the cases
when each of the bounds is the best one. In the above examples our
bound h; , always turned out to be better than hpr. However, we were
not able to establish this fact in general. Comparing the bounds h;; and
hgrr does not seem to be easy, in particular due to the fact that the
number N corresponding to the optimal h,,;,(N) can vary significantly
and does not correspond at all to the number of known &,’s.

Question 4.2. Can one improve (or even optimize) the bound h;
using different test functions in the explicit formulae?

Oesterlé managed to get the best possible bounds for | X (F,)| avail-
able from explicit formulae using the linear programming approach (see
[81). This technique, however, does not seem to be applicable directly
in our case due to the non-linearity of the problem in question. The
optimization seeming difficult, it would be interesting at least to find ex-
amples where a different choice of test functions in the explicit formulae
leads to better bounds than hy ;.

Question 4.3. What are the analogues of the above bounds in the
number field case?

This question seems to be more directly accessible than the previous
ones, since there are both the Mertens theorem and an explicit version of
the Brauer—Siegel theorem available in the number field case [6], [7].
Nevertheless, analytic components of the proofs will certainly be more
substantial, and the application of the Generalized Riemann Hypothesis
might be necessary in certain cases.
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On M-functions associated with modular
forms

(with P. Lebacque)

Abstract. Let f be a primitive cusp form of weight k and level
N, let y be a Dirichlet character of conductor coprime with N, and
let £(f ® x,s) denote either logL(f ® y,s) or (L'/L)(f ® x, s). In this
article we study the distribution of the values of £ when either y or f
vary. First, for a quasi-character ¢): C— C* we find the limit for the
average Avg, Y (L(f ® x,s)), when f is fixed and y varies through the
set of characters with prime conductor that tends to infinity. Second, we
prove an equidistribution result for the values of £(f ® y, s) by estab-
lishing analytic properties of the above limit function. Third, we study
the limit of the harmonic average Avg;h/) (L(f,s)), when f runs through
the set of primitive cusp forms of given weight k and level N — . Most
of the results are obtained conditionally on the Generalized Riemann
Hypothesis for L(f ® x, s).

1. Introduction

1.1. Some history

The study of the distribution of values of L-functions is a classical
topic in number theory. In the first half of 20th century Bohr, Jessen,
Wintner, etc. intiated a study of the distribution of the values of the
logarithm log {(s) and the logarithmic derivative ({’/{)(s) of the Rie-

mann zeta function, when Res =0 > = is fixed and Ims =7 €R varies
[1, 2,18, 19]. This was later generalized to L-functions of cusp forms and
Dedekind zeta functions by Matsumoto [23, 24, 25].

In the last decade Y.Thara in [5] proposed a novel view on the
problem by studying other families of L-functions. His initial motivation
was to investigate the properties of the Euler—Kronecker constant v
of a global field K, which was defined by him in [4] to be the constant
term of the Laurent series expansion of the logarithmic derivative of the
Dedekind zeta function of K, {3 (s)/{ (s). The study of L'(1, x)/L(1, x)

Philippe Lebacque, Alexey Zykin, On M-functions associated with modular forms,
Moscow Mathematical Journal, 18 (2018), no. 3, 437—472.
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initiated in [13] grew out to give a whole range of beautiful results on
the value distribution of L'/L and log L.
Given a global field K, i.e., a finite extension of Q or of F,(t), and
a family of characters y of K Thara considered in [5] the distribution of
L'(s, x)/L(s, x) in the following cases:
(A) K is Q, a quadratic extension of Q or a function field over I, and
x are Dirichlet characters on K;
(B) K is a number field with at least two archimedean primes, and y
are normalized unramified Gréssencharacters;
(C) K=Qand y =y,, t€R defined by y,(p)=p~*.
The equidistribution results of the type

L'(s, x)
L(s, x)

wvg, (12 ) = [ M, )ewlduwl, 6
c
(with a suitably defined average in each of the above cases) were proven
for 0 =Res > 1 for number fields, and for o > 3/4 for function fields,
under significant restrictions on the test function . The function field
case was treated once again in [9] by Y.Ihara and K. Matsumoto, with
both the assumptions on ¢ and on ¢ having been relaxed (& of at most
polynomial growth and o > 1/2 respectively). The most general results
in the direction of the case (A) were established in [11] conditionally
under the Generalized Riemann Hypothesis (GRH) in the number field
case and unconditionally in the function field case (the Weil’s Riemann
hypothesis being valid) for both families L' (s, y)/L(s, x) and log L(s, x).

For Res > % Ihara and Matsumoto prove that

L'(s, )
L(s, x)

Avg, 45( ) = JMU(W)¢(W)|dw|,
C

Avg, $0gL(s, 1)) = | My (w)B(w)|dw),
C

for continuous test functions ¢ of at most exponential growth. Note that
Avg’ in (1) is different from the one used in the latter paper, since extra
averaging over conductors is assumed in the former case, the resulting
statements being weaker.

Unconditional results for a more restrictive class of ¢ (bounded con-
tinous functions), and with extra averaging over the conductor Avg’, but

still for Res > % were established in [10] and [12] in the log and log’
cases respectively in the situations (A, K=Q) and (C).
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The above results give rise to the density functions M, (z) and a re-
lated function M, (z,, z,) (which is the inverse Fourier transform of M,
when 2z, =%, s= 0 €R) both in the log and log’ cases. Under optimal
circumstances (though it is very far from being known unconditionally
in all cases) we have

M, (z) = Avg, 5,(£(x,5)), My(z1,2,) = Avg, ¥, . (£(x,5)),
where £(s, y) is either L' (s, )()/_L(s, x)orlogL(s, x), 6, is the Dirac delta
function, and ¢, , (W)= exp(% (z;0 + zzw)) is a quasi-character.

The functions M and M turn out to have some remarkable properties
that can be established unconditionally. For example, M has an Euler prod-
uct expansion, an analytic continuation to the left of Res > 1/2, its zeroes

and the “Plancherel volume” jlﬁa (z,2)|?|dz| are interesting objects to
C

investigate. We refer to [6, 7] for an in-depth study of M and M, as well
as to the survey [8] for a thorough discussion of the above topics.

In a recent paper by M. Mourtada and K. Murty [27] averages over
quadratic characters were considered. Using the methods from [11], they
establish an equidistribution result conditional on GRH. Note that in
their case the values taken by the L-functions are real. In this respect the
situation is similar to the one considered by us in Section 5 in case we
assume that s is real.

Finally, let us quote a still more recent preprint by K. Matsumoto
and Y. Umegaki [26] that treats similar questions for differences of loga-
rithms of two symmetric power L-functions under the assumption of the
GRH. Their approach is based on [10] rather than on [11], though the
employed techniques are remarkably close to the ones we apply in §5.
The results of Matsumoto and Umegaki are complementary to ours, since
the case of Sym! f = f, which is the main subject of our paper, could not
be treated in [26].

1.2. Main results

In this article, we generalize to the case of modular forms the meth-
ods of Thara and Matsumoto to understand the average values of L-func-
tions of Dirichlet characters over global fields.

Our results are obtained in two different settings. First, we consider
the case of a fixed modular form, while averaging with respect to its
twists by Dirichlet characters. Our results in this setting are fairly com-
plete, though sometimes conditional on GRH. Second, we consider aver-
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ages with respect to primitive forms of given weight and level, when the
level goes to infinity.

Let us formulate our main results. A more thorough presentation
of the corresponding notation can found in Section 2 and in the corre-
sponding sections.

Let B (N) denote the set of primitive cusp forms of weight k and
level N, let f € B,(N), and let y be a Dirichlet character of conduc-
tor m coprime with N. Define £(f ® y, s) to be either (L'/L)(f ® x, s)
or logL(f®y,s), put g(f®y,s, ) =exp(%£(f® x> s)). We introduce
[,(n) to be the coefficients of the Dirichlet series expansion g(f, s, z) :=
= exp(%ﬂ(f, s)) = Z [,(m)n~*. Using the relations between the coeffi-

n=1

cients of the Dirichlet series expansion L(f,s) = Z ns(m)n~
n=1

write [,(n) = Z CIZV (Wm0, where CIZV (n) depend only on the level N.
x=1 ’

¥, one can

Putc, (n)=c! (n).

In what follows, the expressions of the form f < g, g> f, and
f=0(g) all denote that |f| < c|g|, where c is a positive constant. The
dependence of the constant on additional parameters will be explicitly
indicated (in the form <5 orO,s
in the text. We denote by v, (n) the p-adic valuation of n, writing as well
pX|In if U, (n) =k. We also use the notation := or =: meaning that the
corresponding object to the left or to the right of the equality respectively
is defined in this way.

Our main results are as follows.

Theorem (Theorem 3.1). Assume that m is a prime number and let

", denote the group of Dirichlet characters modulo m. Let 0 < ¢ < % and

T,R>0. Let s= 0 + it belong to the domain o = ¢ + %, |t| < T, let z and

%" be inside the disk 9, = {z: |z| < R}. Then, assuming the Generalized
Riemann Hypothesis (GRH) for L(f ® y, s), we have

lim —— > a(f®y,s2)e(f®y,s,2) =

m— |rm| 7€

= Y LM, (Mn"2 = M, (-%,2).
n=1

Moreover the convergence is uniform in z, 2z’ and t in the prescribed range.

Theorem (Theorem 4.1). Let Res=0 > 1 and let m run over prime
numbers. Let ® be either a continuous function on C with at most expo-
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nential growth, or the characteristic function of a bounded subset of C or
of a complement of a bounded subset of C. Define M, as the inverse Fourier
transform of M, (2, 2). Then under GRH for L(f ® y, s) we have

m—e Tl &,

lim —— 3 #(S(f®y,5)) = JMa(w)¢(w)|dw|.
C

Theorem (Theorem 5.1). Assume that N is a prime number and that
k is fixed. Let 0 < e < % and T,R> 0. Let s =0 + it belong to the domain

o=¢e+ 1, |t| <T, and z and 2’ to the disc 9y of radius R. Then, assuming
GRH for L(f, s), we have

lim > w(Pe(f,s,2)g(f,s,2)= > nm* > ¢, (e, (m),
N=F rep (V) n,meN x>1
where w(f) are the harmonic weights defined in Section 5. Moreover the
convergence is uniform on g,z and t in the prescribed range.

Finally, let us describe the structure of the paper. In Section 2 we in-
troduce the notation and some technical lemmas to be used throughout
the paper. The Section 3 is devoted to the proof of Theorem 3.1 on the
mean values of the logarithms and logarithmic derivatives of L-functions
obtained by taking averages over the twists of a given primitive modular
form. Using GRH, we deduce it from Thara and Matsumoto’s results. In
Section 4 we study unconditionally the analytic properties of M and M
functions in the above setting. We then prove an equidistribution re-
sult (Theorem 4.1), which is, once again, conditional on GRH. In Sec-
tion 5, we consider the average over primitive forms of given weight k
and level N, when N — «, establishing under GRH Theorem 5.1. The
orthogonality of characters is replaced by the Petersson formula in this
case, which obviously makes the proofs trickier. Finally, open questions,
remarks and further research directions are discussed in Section 6.

Acknowledgements. We would like to thank Yasutaka Thara for
helpful discussions. The first author would like to express his gratitude to
the INRIA team GRACE for an inspirational atmosphere accompanying
his stay, during which a large part of this work was done.

2. Notation

The goal of this section is to introduce the notation necessary to
state our main results. We also prove some auxiliary estimates to be used
throughout the paper.
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2.1. The g-functions

Let N, k be two integers. We denote by S, (V) the set of cusp forms of
weight k and level N, and by S;{‘e"" (N) the set of new forms. For f €S, (N)

we write f(z) = 21 M f(n)n(k‘l)/ 2e(ng) for its Fourier expansion at the
=
cusp o, with the standard notation e(nz) =e

Let By (N) denote the set of primitive forms of weight k and level
N, i.e., the set of f"" = f/n¢(1) where f runs through an orthogonal
basis of S} (N) consisting of eigenvectors of all Hecke operators T,, so
that the Fourier coefficients of the elements of B, (N) are the same as
their Hecke eigenvalues. Note that for a primitive form f € B, (N) all its
coefficients 7 (n) are real.

The L-function of a primitive form f € B, (N) is defined as the Dirichlet

2minz

series L(f,s) = Z ul: (n)n°. The series converges absolutely for Res > 1,
n=0

however, L(f, s) can be analytically continued to an entire function on

C. It admits the Euler product expansion:

L(f,s) =1L, (f,9),
p

where, for any prime number p,
_ o1 .
(1=ne@p~+p7>)  if(,N) =1,

(1—ns()p~) " if p | N.

Notice that in this paper all L-functions are normalized so that the functional
equation relates the values at s and 1 —s. By the results of Deligne, these
local factors can be written as follows ([14, Ch. 6] or [20, Ch.IX, § 71):

L,(f,8) =

L(f,9) = (1—as(p=) (1~ B;(pp~) ", ®)
where
lap(P)| =1, Br(p) = a;(p)~" if (p,N) =1,
a;(p)=+p 2, B;(p) =0  ifp|IN (thatis p | N and p*{ N,
ap(p) = Br(p) =0 if p* | N.

We are interested in the two functions

. L/( , )
g(f> S’ Z) = exp(% L(ff, ;) )>

G(f,s,z) = exp(%z logL(f, s)).
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Define h, (x) and H,(x) as the coefficients of the following generating
functions:

+ o0
eXP( ) Z h, ()t",  exp(—xlog(1—1)) = >, H,()t",

n=0
or, equivalently (cf. [11, §1.2]), as the functions given by hy(x) =Hy(x)=1
and, forn>1,
L 1(n-1 1
hGo =Y ("7, Hy) = Sx(e+ D etn—1).

]
= 1

As we have
izLl'(f,8) _ iz 5 as(p)p—logp  B;(p)p “logp
2 L(f,s) l-as(Pp~ = 1-Bs(P)p~—*"~°
we can write (using the standard convention that, in the case when
Bs(p) =0, we put B;(p)"=0, if n>0, and ;(p)°=1):

. L/( R )
g(f’ S’ Z) = exp(% L(;, ;) ) =

B as(p)p~* _—izlogp Bs(p)p™  —izlogpy
1_[ (1 a;(pp= 2 )ex (1—/5f(p)p—s' 2 )—

; n( 1OgP)Otf(p) _"s)(zn:hn(—%zlogp)[o’f(p)”p"”):
+

oo

%, 3 (=5 logp)hu-o(~5 logp)as (o), 0" "p ) =

n

o
o

PSR iz iz 2r—n_—ns
= (z > b= togp )ha-o(~ ogp ) 3”75
oz

or

“+ oo
X l_[ " h ( logp)af(p) p =112 10EY™™.

plIN n=0 p n=0
In a similar way we get:

G(f,s,2) = exp(%logL(f, s)) =
~ [lesn(- 10801, )exo( - 10801-,p°) =
= l'[(+2 > H, (Bt (E)as (0> —ns)x

piN \n=0r=0

+ o0
x[1 Z Hy(2)as 0)p ™ =TT 2 A Mp™

plIN n=0 p n=0
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We extend multiplicatively A, and A, to N so that we can write:

g(f,s,2) = D> A, (mn*, G(f,s,2) = 2. A,(mn"".

n=z1 n=z1

We will use the notation £ for LL((JJ:;)) or logL(f,s), g for g or G,

h,(p™) for hn(—%z logp) or Hn(%z), and [ for A or A depending on the
case we consider. Thus, we can write in a uniform way:

. too
a(f,s,2) = exp(%i)(f, s)) =X Lmn =[] LpEHp ™=

n=z1 p n=0

4o n +o
= H(Z > bz(pr)hz(p”‘r)af(p)zr‘“p"”) [T 2 0.(p"as(p)"p~™.
pIN \n=0r=0 plIN n=0

The coefficients [,(n) will be used to define the M-functions in the
case of averages over twists of modular forms by Dirichlet characters.

2.2. The coefficients [,(n) and c, ,(n)

In this subsection we will find a more explicit expression for [, (n).
For ptN we will use the formula (see [31, (3.5)])

- af(p)r+1_ﬁf(p)r+l
ns(pY) = as(p)—PBs(p)

which easily follows from (2). Taking into account that 3 () =a;(p),
we have for r>2

af(p)r+1 _ af(p)r+1 r - r o
——— =, a;(pP)'ay(p) " = as(p) " =
o —ap | M@= e
r—1 .
=a;(p) +a;(p) + 2 a;(p) 7 =
i=1

nf(pr) =

=a;(P) +ap(p)+ Y ap(p) =
i=0

=a;(p)" +a;(p) +n:(p"?).

The above formula also holds for r =1 if we put 1, (p~1) =0. From
this we deduce that

ap(p) +Bs(p) =nr(P)—np("A.
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Using the previous formula, we can write
r
L(P") = 2 (Db, (P Dy (p)* "
a=0

=Y

=0,(p)*+ > 5,(pM0, (") (ap(P) T+ ap (p)* ) =
a=0

=Y

=0;(p1% 4 2 0P (b (e (P s (p ) =

=b,(p)2 b, (pi (P +
=
+ Z (hz(pa)f]z(pr—a) _ bz(pa—l)bz(pr—a+1)),nf(pr—2a) —
a=0

1£]
= 31 (. (ph. (P — b, (P* Db, (P’ (P72,
a=0

r

where we put bz(pg) =h,(pz" 1) =0, if r is odd, and b,(p®) =0, if a <0.

When p | N we have

(") = b, (PNas(P)" = b (PN (P)" = b, (PN (P".
Denoting by & the set of prime numbers, forn= [ p*»™ put
DEP
Iy(n)={meN:v,(m) = vp(n)mod 2forpe?, v, (n) =v,(m) if p| N}
and
Jy() ={m e Iy(n): v,(m) < v,(n) forall p € 2}.

Note the following easy estimate [3, Theorem 315], in which 7 (n) is the

number of divisors of n:
v, (n)

IJN(n)IZIT[([ = |+1) < v <, ©
pln

The previous computations may be summarized as follows:

LD = X & (0,
x€Jy(p")

where
Ci\{pa (rH =

UZ(P%)UZ(P%) - hz(p%_l)hz(p%aﬂ), if pt N and r = amod 2,
=1 b, (p"), ifp|Nandr =aq,

0, otherwise.
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We have [, (n) =l_[ [, (p”P(”)) and ¢ (n)n(m)=n;(nm) if (n, m) =1, thus
pln

Iz(n)zl_[( )3 Cff,x(p”f’(”))nf(x))z > om0,

pln \ xeJy (pr ™) xeJy(m)

with
= ﬂc oo ().

Note that the coefficients clz\{ (), Iy(n), and Jy(n) depend only on the
level N and not directly on the modular form f. Let us also define
I(n) =I,(n), J(n) =J;(n), and ¢, ,(n) = c . (m). They will be employed
in the statement of Theorem 5.1, which is our main result on averages
over the set of primitive forms B, (N).

Let B(a,R) ={z<C: |z —a| <R} denote the open disc of radius R
and center a € C, let B(a, R) be the corresponding closed disc. We also
put 2 =B(0, R). The following estimate is used throughout the paper.

Lemma 2.1. For any € >0 and z € 9y we have |cfix (M| <K,z n® and
|l ()| L 1"

Proof. To see this, recall [11, 3.1.2] that for any prime p

m(3)

< 1,() < n, () < h,(zl10gp)

and

hr(—%logp)‘ h,(|z|logp) < exp(2+/r|z|logp),

thus in both cases |h,(p")| < exp(2 autd logp). Using the concavity of
the function ,/x, we see that

|Ci\fx(pr)| < ezJ%lz\logpeZ\/%\zllogp +62\/(%—1”2\logp62\/(r+7“+1)\z|logp <

<eé? \zllogp( S5t %)_’_62\/\z|logp(\/%—1+\/%+1)S
< 62,/\z|logpx/§+e2~/|z\logp«/§ < 262 2rlz|logp

when ptN. The above estimates on h,(p") also imply the same bound

on cﬁ{x(pr) when p|N.
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Now, denoting by w(n) the number of distinct prime divisors of n

and using once again the concavity of v/x, forn= [ p%»™ we have
pEZ?

loglczx(n)l <> (log2+4/v, (n) log pv/8R) <5 Z,/v (n)logp \/_<<

pln

1
<R \/lev (M logpvw(n) <p \ %gﬂogn,
pln

since by [5, Sublemma 3.10.5] (which is classical in the case of N) we
have

logn
2+loglogn’
We thus conclude that |} (n)| <, zn®.
As for the second statement, we notice that the estimate (3) together
with Deligne bound |1 (n)| < 7(n) <, n® imply

wn) K @

L(n) <, [Jy(M)]-nf-1(n) <, n*

O

We conclude the section by the following trivial but useful lemma.

Lemma 2.2. We have I,(n) =1_-(n), and cN (n)=c", L.

Proof. The eigenvalues n 7(n) are all real, so the L-functions L(f,s)
have Dirichlet series with real coefficients. Thus the statement of the
lemma follows from the definition of the coefficients I,(n), and cg’:x (n).

O

3. Average on Twists

This section is devoted to the proof of an averaging result for twists
of a given primitive form. It is to a large extent based on the work of IThara
and Matsumoto [11], which provides a general setting for the problem we
consider.

3.1. Setting

Let us fix a primitive cusp form f € B, (N) of weight k and level N. Let
x: (Z/mZ)* — C* be a primitive character mod m, where (m, N) =1. It
is known (see [15, Prop. 14.19 and Prop.14.20]) that f ® y is a primitive
form of weight k, level Nm?, and nebentypus y2. We consider the twisted
L-function given by

L(fey,s)=[[L,(fex,s),
p
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where the local factors are defined as follows:

L ®xs)=(1-a;@x@p~) (1-Bmr@p~) ",

with the notation of Section 2. It is an L-function of degree 2 and con-
ductor Nm?, entire and polynomially bounded in vertical strips. After
multiplication by the gamma factor

ri(s) = va2’s @m = r(s+ 551,
it satisfies a functional equation [15, § 5.11]. Its analytic conductor q(f ®

® ¥, s) is defined as follows:

k+1

q(f®x,s):Nm2( 3

s+k—;1‘+3)(‘s+ ‘+3)$Nm2(|s|+k+3)2.
Just as in Section 2 we use the following notation for modular forms
with nebentypus:

izLl'(f®y,s)
U @152 =exp(STals),

G(f®y,s,z)= exp(%Z logL(f®y, s)).

We also write g(f ® y, s, z) to denote either of the above two functions.
If G is a function on a finite group K, let Avg,x G(y) denote the

usual average |[K|™! Y. G(y).
XEK

3.2. The M-function

We would like to understand the average over all Dirichlet characters
mod m of the functions g(f ® y, s, z), when m runs through large prime
numbers. Thara and Matsumoto’s results apply in this case and we get
the following theorem.

Theorem 3.1. Assume that m is a prime number. Let T',, denote the

group of Dirichlet characters modulo m. Let 0 < ¢ < % and T,R>0. Let

s =0 +it belong to the domain o = ¢ + %, |t| < T, let z and %’ be inside
the disk 9. Then, assuming the Generalized Riemann Hypothesis (GRH)
for L(f ® y, s), in the notation of Section 2 we have

Avg (g(f ®x,52)9(f®y,s, z’)) - > LM [, (Mn~% L r1,p M 2.
XE, (n,m)=1
)

[STL



222 On M-functions associated with modular forms

Moreover,
lim Avg (6(f® 1,5, 2)9(f®y,s,2)) = D 1)L M)n 2.
VS

| n=1

Proof. We notice that g(f® y, s, 2) = Z [,(n) y (n)n~*, where [, (n)

n=1
are the coefficients of g(f, s, z). We thus can deduce the theorem from
[11, Theorem 1]. We can pass to the situation treated in [11] by omitting

the summand corresponding to the trivial character y,, since in our case

all the g(f ® y, s, z) are holomorphic for Res > 1 Thus, it is enough to
prove that the family [,z is uniformly admissible in the sense of Thara
and Matsumoto.

First of all, the property (Al), asserting that [,i<g (n) <, n®, follows
from Lemma 2.1.

The property (A2) states that g(f ® y, s, z) extend to holomorphic
functions on Res > = for any non trivial y, which is true under GRH.

The property (A3) will be proven in the following lemma, which will
be used again in Section 5.

Lemma 3.2. Let f be a primitive form of weight N, and let y be a
primitive Dirichlet character of conductor m coprime with N. Then, assum-

ing GRH for L(f ® y, s), we have for Res = % +e:

max (0, logla(f ® 1, 5, 2)) K.z () >4 (mNk)' 7%,
where £(x) =log(|x|+2), t=Ims.
Proof of the lemma. First, the following estimates hold [15, Theo-

rems 5.17 and 5.19] for any s with % <Res=0< %:

L'(f®y,s)
TIg®gs o(
and

1 2-20
20_1(logq(f®x,s)) +loglogq(f®x,s)),

_ (oga(f ® x,5))*™>
logL(f®y,s) = O((ZG “Dlogloga(f 87,5 +loglogq(f® x, s)),

the implied constants being absolute.
Next, for the same range of s we have

logq(f ® x,s) < log(mNk) +1log(|t| +2) < £(mNk) +£(t).

Thus we see that

loglg(f®,s,2)| =log

exp(%i)(f@){, s))‘ = Re(%ﬂ(f@){,s)) <
<LglL(f®x,9
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SO
max (0, log|g(f ® 1, 5, 2)|) K, g L)' >4 (Nmk)'~>*,

Ifo> % a much simpler estimate suffices. Indeed, using the fact that
[15, (5.25)]

L'(f,s) Ap ()

- L()J:, ;) = Z );13 and logL(f,s) = _Z

n n

As(n)
n*logn’

with A;(n) supported on prime powers and
As(p") = (as(P)"+ B¢ (p)") logp,

L'(f®y,s)
L(f®x,s)
lute constant. Thus the conclusion of the lemma still holds in this case.

O

Thus Thara and Matsumoto’s property (A3) is established (with a
stronger bound than required), since in our case N and k are fixed. So,
the family we consider is indeed uniformly admissible. O

Remark 3.3. We think that the estimate (5) should still be true if
we omit the condition on m to be prime. To prove it one establishes
an analogue of Lemma 3.2, replacing y with the primitive character by
which it is induced and estimating the bad factors of the L-function (with
some additional work required when m is not coprime with N). Then
one uses once again [11, Theorem 1], in which the first inequality is true
without any restriction on the conductor.

Remark 3.4. The theorem should hold unconditionally for o =
=Res > 1 by orthogonality of characters, all the series being absolutely
convergent in this domain.

As a direct consequence, we obtain the following result on averages
of the values of g. Put

we see that both and log L(f ® y, s) are bounded by an abso-

M,(z1,25) = 2, I, (WL, (Mn~>.
n=1

Because of Lemma 2.1, the series converges uniformly and absolutely on
Res > % +¢, |21/, 22| <R, defining a holomorphic function of s, z;, 2, for

Res> % Put

wzl,zz (w) = eXp(é (Zlﬂl + Zle)).
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Corollary 3.5. Let m run over prime numbers. Then, assuming GRH,

lim Avg wzl,Zz L(fey,s)= I\N/[U (21, 29).
M=% yer,,
Proof. By definition, we have:

Yy 0 (E(f®,8)) = exp(%zﬁ)(f@)(, s)) exp(ézzil(f@)(, s)) =

= 9(f®)(,5, _2_1)9(f®)(,5> 22)'
By Theorem 3.1 we get
lim Avg ), , (E(f®y,s)) = > Lz (M), (m)n~2%°.
m—oo ¥l

n=1

Lemma 2.2 implies that [_;(n) =[,(n), so the corollary is proven. O

4. The Distribution of L-Values for Twists

Our next result concerns the distribution of the values of logarithmic
derivatives and logarithms of L-functions of twists of a fixed modular
form f. In this section the dependence on f in < will be omitted.

Recall that we have defined

M(z1,25) = >, L, (M, (mn~>,
n=1

the corresponding series being absolutely and uniformly convergent on
Res> % +¢, |z, <R, |z, <R. For o €R, we put M, (z) =M, (z, 2).
Define the family of additive characters

wzl,zz (w) = eXp(é(Zlﬂl +ZZIU)).

We also let ¢, (w) =1, ;(w) = exp(iRe(zw)). Recall that the Fourier
transform of ¢ : C— C, ¢ €L is defined as

Fo@ = [ o)y, )ldwl = 3= [ $w)e e |dw| =
C C

= % J ¢ (w)e ) dx dy,
RZ
where |dw|= % dxdy,x=Rew, y=Imw, xX’=Rez, y'=Imz.

The goal is to prove the following equidistribution result, which is
an analogue of [11, Theorem 4].
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Theorem 4.1. LetRes=o0 > L and let m run over prime numbers. Let
& be either a continuous function on C with at most exponential growth,
that is, ®(w) < e?™! for some a >0, or the characteristic function of a
bounded subset of C or of a complement of a bounded subset of C. Define
M, as the inverse Fourier transform of Ma (2), M, (2)= 9’1\7[0 (—2). Then
under GRH for L(f ® y,s) we have

lim Avg 3(S(f ® z,5)) = JMU(w)é(w)ldwl. ®)
m=« yer,, z

Remark 4.2. We think that the above theorem should hold uncon-
ditionally for any o > 1 and any continuous function ¢ on C, by virtue
of Remarks 3.4 and (iv) of Corollary 4.12.

To prove this theorem we first construct the local M and M-functions
and establish their properties. We then obtain a convergence result for
partial M-functions M; p for finite sets of primes P to a global function
M. This allows us to prove some crucial estimates for the growth of M.
Finally, we deduce the global result using Corollary 3.5. Our approach
is strongly influenced by that of Thara and Matsumoto, the main ingre-
dients being inspired by the results of Jessen and Wintner [18] that we
have to adapt to our situation.

All the results below, except for the proof of Theorem 4.1 itself, do
not depend on GRH.

4.1. The functions M, » and 1\7Is’p
Let Res =0 > 0. Define the functions on T, = Cl={teC:|t|=1}by

—(ogp)a(p)p~*t —Uogp)B(p)p~st
1—a(p)p~t 1-pp~t

8sp(t) =

and
G, () = —log(1 —a(p)p~°t) —log(1— B(p)p—°t).
As before, we let g; , denote either g , or G, ,, depending on the case we
consider. We note that the local factor of the L-function is 1 once p?|N,
so we can omit such primes from our considerations.
Denote by f,(z) the expression

—(ogpla(p)z  —(ogp)B(p)z

—log(1—a(p)z) —log(1—B(p)2).

1—a(p)z 1-B(p)z
in the log” and log case respectively. Note that if p{N,
_ ns(p)z—22° 5
fp(2) = —logp- Tor (a2 e F or —log(1—7n¢(p)z+27)
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respectively. The functions f,(z) are holomorphic in the open disc |z| < 1.
We obviously have 95, (O =T, (p~°t).
For a prime number p, let T, = C! be equipped with the normalized
dt

Haar measure d*t = it If P is a finite set of primes, we let T :Ig) T,
and we denote by d*t, the normalized Haar measure on Tp. Put also
gs,P = Z gs,p'
pEP
We introduce the local factors Ms,p (21, 2,) via
“+
M p (a1, 23) = 2L, (DL, (PP )
=

The series is absolutely and uniformly convergent on compacts in Re s > 0 by

Lemma 2.1. Put MS,P(zl, z)=]1 Ms,p (21, 25). We also define Mo,p (2)=
DEP

=M, ,(z,%), and M, p(2) =M, »(z, 2).
Lemma 4.3. (i) The function M (21, 2,) is entire in z;, 2,.
(ii) We have

M, (31, 2) = j exp( £ (19, , (t ™) + 28, (1)) )d*t.
(Cl
In particular,

Wy 1 2) = [ s, (00, ()4t
(Cl

and _
M, ,(z) = Jexp(i Re(ga’p(t)ﬁ))dxt.

(Cl
(iii) The “trivial” bound |1\7[U’p (2)| <1 holds.
Proof. (i) This is a direct corollary of the absolute and uniform con-
vergence of the series of analytic functions (7), defining Ms,p (21, 29).
(ii) It is clear from the definitions that

exp(igzgs,p(t)) = ;)[z(pr)(p—st)r_

So, the statement is implied by the fact that 1\715,1, is the constant term of

the Fourier series expansion of exp(% (2195, tH+ 2985 p (t))).
(iii) Obviously follows from (ii). O
For the sake of convenience in what follows we will identify a func-
tion on R? with the Radon measure or the tempered distribution it de-
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fines, when the latter make sense. We will also regard the Fourier trans-
form or the convolution products as being defined via the corresponding
distributions. We refer to [18, § 2, § 3] for more details.

Proposition 4.4. (i) There exists a unique positive measure M, p of
compact support and mass 1 on C ~R? such that

Mg p(®) = J & (g, p(tp))d™tp
Tp

for any continuous function ¢ on C.
(ii) gMO-’P =MO',P (Z).
(iii) There exists a set of primes % of positive density such that, for all

PEP, Ma’p(z) <, 1+ |z|)_%.

(iv) Let P be a set of primes. If |P N P| >4, then M, p admits a
continuous density (still denoted by M, p) which is an L! function. The
function M, p satisfies M, p(2) =M, p(Z) = 0.

(V) M, p is of class 6" once [P N Wfl >2(r+2).

Proof. (i) The uniqueness statement is obvious and the existence is
given by the direct image measure (g, p).(d*tp). The volume of an open
set U of R? is thus given by M,, »(U) :Vol(g;;(U)), therefore M,, p has
compact support equal to the image of g; » and mass 1. From the formula

M; p(®) = J ® (g, p(tp))d ™ tp, it is clear that M, p depends only on o, since
Tp
Haar measures on T, are invariant under multiplication by p
(ii) From the definition of the convolution product we note that,
regarded as distributions with compact support, M, p =*,cp M, .

Next, FMg, p =F (xpepMy p) = I F M, ,. From Lemma 4.3 we see
pEP

iIm(s)

that MU,P (21, 29) =M, p(¥);, ), and for the Fourier transforms of tem-
pered distributions on C ~R? we have

TIM, ,($) =
=My, [ w.rp@ldwl) = [ [, @ @)ldwld*e =
ol T, C

— Jngs,p(t)(w)¢(w)dxt|dw| = JMo,p(qu(w))¢(w)|dw| —
CT, c

= [ My, @huDe@WIdw| = [ i, ,w)¢ w)dw]
C C

We deduce that FM,, p = Ma’p (2).



228 On M-functions associated with modular forms

(iii) This is the most delicate part. Unfortunately, we cannot apply
Jessen—Wintner theorem [18, Theorem 13] to fp(2), since p, (in the no-
tation of the latter theorem) depends on p. Therefore, we need to estab-
lish the following explicit version of their result.

Lemma 4.5. Let p >0 and let F(2) = Y. a;z* be absolutely con-

k=1
vergent for |z| < p +e¢€, €>0. Let SC C denote the parametric curve
{S(0)}gero1) = {F(re*™ ) }gero)- Let D, be the distribution on C =R>
defined as the direct image of the normalized Haar measure on the circle
of radius r in C by F and let D, = Z D, be its Fourier transform. Assume
that |a;| #0. Then, if

" |a1|

V(T Klalot2)

k=2

for any r < py=min(p, p”") we have D, (z) <,y (1+ lz]) 5.

Proof. Our goal is to make the proof of [18, Theorem 13] explicit in
order to be able to estimate p,. To do so, we will verify the conditions of
[18, Theorem 12] by proceeding in several steps.

First of all, we want to ensure that F/(2) #0, and the curve S is
Jordan. Put

R L
p= V2 Y klag|pk?
k=2
If r <min(p, p"), we have F'(2) #0 for all z€ 9, =B(0,r), and F is

il

injective on 9,. Indeed, either |Reqa;| or |Ima,] is greater than 73

\/_ Then

Without loss of generality we can suppose that |Rea;| > >

[ReF'()] > [Reay |~ sl 3, Klaylph™? > 1%L —Ja] 3, Klaylp*=* > 0
k=2 k>2
on 9., in particular F’(z) #0. The sign of Re F’(z) does not change as the
function is continuous, so once more, without loss of generality, we may
assume that Re F’(z) > 0. Then, for 2, # z, two points in Z,, we have by
convexity of %,

F(z)) —F(z)
2y — %

Re jReF (2, +t(z, —2))dt > 0,
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which proves the injectivity. Thus F is a conformal transformation and S
is a Jordan curve.

The next step is to get a condition for the curve S to be convex. We
use a well-known criterion [29, Part 3, Chapter 3, 108], stating that S is
convex if
2F"(2)

Re )

on |z|=r. The estimate
, |21 3 k(k = Dlalp* 1zl X kk = Dlae|p*?
|zF" ()| k=2 o _ k2
S G Tal -l Sralet S T g (- 1)
> V2
for r < min(p, p’) implies that the condition is satisfied once the left-
hand side is less than one, that is,

" _ |a1|(2_\/§)
T2 T k(k—1)]ag|p*?

k=2

2F"(2)
F'(z)

Re

k=2

r<p

Now, the condition (i) of [18, Theorem 12] is satisfied for all r < p.
As for (ii) we consider the function
2:.(0) = > |ag|r* cos 27 (kO + 1) — 1),
k>1
where 7 € [0, 1) is fixed and a; = |a,|e*™"x. We have to prove that for

r explicitly small enough, its second derivative has exactly two roots on
[0, 1). We compute

g7 (0)
h-(6) = - 4m2r
= la;|cos2m(0 + v, — ) +1 Y. j2|agr* 2 cos 27 (kO + vy — 1),
k>2
so

h! (0) = —2m|a;|sin27w(0 +y; — 1) —

—21r Y k3lag|r* 2 sin2m (kO + v, — 7).
k=2
Take now

a
r< | 1| — "

V(T Rlalo™?)

k=2
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Since Y. k®la;|p* 2= > k%|a;|p* 72, the function h. can possibly have
k>2 k>2

zeroes only on the two intervals (modulo 1) containing i% —y;+7mod 1

defined by the condition |cos27(6 + v, — 7)| < % The same argu-

ment shows that h. is positive at 8 = —y; + tmod 1 and negative at
0= % + 7 —y;mod 1, and therefore it has at least one zero in each of
these intervals. 1

On the other hand, when |cos 27t (0 + 71, — 7)| < —=, we see that

V2

I (0)] = 2rlay|-|sin27(0 + v, — 1) —27r D, k3|a|rk2 >
k>2

1 1
> 2 Vi-5-—==|=
”'all( 2 ﬁ) 0.

showing that there is exactly one zero of h, in each of the above inter-
vals.
We thus can apply [18, Theorem 12], obtaining that the conclusion
of the theorem holds for r < py=min(p, p’, p”, p”") =min(p, p”). O
By [28, Corollary 2 of Theorem 4], there exists a set P of positive
density such that, for all p €P, |n;(p)|>1. We apply the above lemma
to the functions F =§,, p €P, defined by absolutely convergent series for

|z| <p+e, with p=¢e= %, and to the radii r, =p~7. In the log case,
the coefficient |a,| of the lemma is [n¢(p)|, whereas we have for any i,

la;| < 2. In the log’ case, the coefficients are all multiplied by log p: |a|
is [n;(p)|logp and |a;| < 2logp. Thus, for p such that p € P and

—o 1 1

< =
p 8vV2 Y k327 2042’

k=2

we have that Mg,p ()= O((l + Izl)_% ), proving thus (iii).
(iv), (v) By the Fourier inversion formula, we get & M op(—2)=M, p.
It is well-known [18, §3] that f = Zg is absolutely continuous and

admits continuous density, once the integral jlg(w)lldwl converges.

c
Moreover, it possesses continuous partial derivatives of order < p, if the

convergence holds for lelp |g(w)||dw|. Thus, to deduce the regularity
C
properties of M, p it suffices to bound the growth of Ma,p (2).
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For the primes p ¢ &, we use the trivial bound |1\7[U,p (2)| <1 from
Lemma 4.3. For all the other p the bound from (iii) can be applied.

Now, the identity M, »(2) = M,, p(%) is the consequence of (ii) to-
gether with the symmetry M, (z, ) = M, (%, z). The positivity of Mg p(2)
follows from the definition M, »(U) :Vol(g;’P(U)) together with the
continuity that we have established. O

Let # denote the set of all prime numbers, Z, ={peP: p <x}.

Corollary 4.6. Given r >0, y > 0, there exists C =C(y,r, f) such
that MU’%\% (2)=0((1+1z)7") and the function Ma’gx\g,y (2) is of class
6" for all x=C.

Proof. This comes directly from the fact that &, has positive den-
sity, implying that there exists C such that if x > C, then (2, \ 2,) N &
contains more than 2r + 4 primes. O

Remark 4.7. The previous proposition is motivated by the following
equidistribution result that is essentially implied by [5, Lemma 4.3.1]
applied to U =dog, »:

lim Avg B(£p(f® 7,9) = [ @(gop(t))d "y,
Tp

m— oo
X€ly

where & is a an arbitrary continuous function on C, £, is either the loga-
rithm or the logarithmic derivative of the corresponding partial product
IQJLP (f®y,s) for L(f ® x,s), and y runs through all Dirichlet char-
acter of prime conductor m & P. Note a difference in the type of average
considered in the aforementioned lemma with the one we use. The proof
stays the same, being an application of Weyl’s equidistribution criterion
together with the orthogonality of characters.

Note, however, that it is not at all obvious to pass from the local
equidistribution result to the global one. This also seems to give (after
very significant effort) only a certain weaker form of global averag-
ing results (e.g., [5], [9]). Following later papers by Ihara and Mat-
sumoto, we use instead the convergence for particular test functions
(quasi-characters, cf. Theorem 3.1) and then deduce the general case,
using the information on the resulting distributions together with some
general statements on convergence of measures.

4.2. Global results for M,
Let us establish some global properties of M, in particular the con-

~ ~ 1
vergence of M, p to M,. From now on we assume that Res =0o > 3>
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without mentioning it in each statement. Recall that M, (z) is defined
as M -(2,2).

Proposition 4.8. (i) The function M,(z,, 2,) is entire in z;, 2,.

(ii) We have the Euler product expansion

Ms(zla Zz) = l_[Ms’p(Zlﬁ ZZ))
p

which converges absolutely and uniformly on Res> % +eand |z, |2,| <R,
for any ¢, R>0.

(iif) M, (2) =0((1+|z])™N) for all N> 0.

Proof. (i) This is a direct corollary of the absolute and uniform con-
vergence of the series of analytic functions, defining M, (2, 2,).

(i) To prove the uniform convergence of the infinite product it is
enough to establish it for the sum Y. |Ms’p (21, 25) — 1|. By Lemma 2.1 we

p

see that

M , (21, 22) — 11 < X 16, (DI, (PP ™27 <o g 3 p% 27T <
r=1 r=1

< i p(—l—e)r < 2p—1—8’
r=1
which implies the convergence.
The limit of the infinite product equals M,. Indeed, the series for
M, converges absolutely and uniformly, thus the difference between M,

and the partial product over primes p <x, which is ). l, (M1, (mn~%,

nes,
where S, is the set of integers n divisible by at least one prime strictly
greater than x, tends to 0 as x — .

(ii) Note that for any two sets P C P’ of primes, any z€C,
M, pr(2)] < M p(2)].

Corollary 4.6 implies that one can find a finite set of primes P such that

MU,P <1+ Izl)_N. This is enough to conclude. O
Remark 4.9. Along the same lines as in [10, 3.20], one proves a

more precise estimate: |Ma’p (2) — 1| < |2|2p™27 in the log case, and

Iﬁo,p (2) -1 < |2|*p %  logp

in the log” case with absolute constants in <.
Remark 4.10. One should be able to write an explicit power series
expansion of M,(z;, 2,) similar to the one in [11, § 4, Theorem M].
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4.3. Global results for M,
Proposition 4.11. The sequence (M, g (2)),s1 converges uniformly

(as continuous functions) to M, () := 971\7[0(—2). Moreover, for a fixed y,
the sequence of continuous functions (Mg 5,\2,)x>1 converges uniformly to
the continuous function MY’ = *9\9, Mo, =7( [1 M,,(-2), and
PEP\P,

we have M (z) :Mo,g,y *M((jy).

Proof. First of all, the notation x>>1 is used to make sure that all
the elements of the sequence are continuous functions.

Fix £ > 0. One can find a closed disk 2, and x’ large enough, so that
forall P’ > 2,

[ 1, ) lldw] < e.
C\2,
The sequence (Ma“@x (2)),s1 converges uniformly to Ma (2) =1\7[U (2) on

9, by Proposition 4.8, thus we can find x” large enough to guarantee for
x >max(x’, x7),

|7 My(2) = F My 5, (2] < 2¢.

This proves that the sequence (& Mo-,yx (2))xs1= Mg 5 (—2))ysq cON-
verges uniformly to F}]\N/[U (2)=M,(—2).

The same arguments apply if we remove &, from the set of all
primes. Moreover, taking the Fourier transform of

Mo‘ = MU,.@y X l_[ Mo‘,p?
PEP,

we see that M (2) =MU’% * (*ﬁ\gyMa,p)- O

Corollary 4.12. We have

1) M, (2) =M, (%) =0;

2) | My (2)|dz|=1;
J

3) My(z) € 6 and the partial derivatives of M, 5 converge uni-
formly to those of M;

4) If o > 1, the support of M, is compact.

Proof. (i) This is obvious from the corresponding properties of M, p.

(ii) Using the identity M, (z) =& Ma(—z), we see that
M, @1dzl = W, 0 =1.
C
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(iii) We note that, given p, there exists y, such that for p > y,,
M; 5, has continuous partial derivatives up to order p. Now, letting

aa+b

D@D = sz 55 We have D@D (f x g) = (D@D f) x g, if f admits the

corresponding partial derivative. The statement now follows from the
i Y )
uniform convergence of M; 5\ 2, to M.

(iv) Indeed, by the uniform convergence of M, » to M,,, and the fact
that the support of M,, p is equal to the image of g; p, it is enough to prove

that the latter is bounded for o > 1. This is true since the series >.p~°
p
converges for o > 1. O

We will now obtain the rapid decay of M, a la Jessen—Wintner by
proving the following proposition, which is crucial for the proof of the
main theorem of this section.

Proposition 4.13. For any A >0, M, (2) = OU,A(e‘MZ‘Z), as |z| — .
The same is true for all its partial derivatives.

Proof. We adapt the proof of Jessen—Wintner [18, Theorem 16] to
our specific case. The proof is based on an argument of Paley and Zyg-
mund.

Leto > % and A > 0 be fixed. Let p; <... <p;... denote the sequence
of all prime numbers. Write P; ={py, ..., p;}. We have

HOEDIS
i>1
on the disk B(0, 1). By writing

1-np(Pz+2> = (1 —a;(P)2) (1 - B(p)2),

where |a;(p)| and |B;(p)| are less than or equal to 1, we see that for all
i, |a; | <2logp in the log’ case and <2 in the log case respectively.
Put r, = p~7. Then the series > |a1,p|2r§ converges, so that we can
p

find g such that
— 2.2
d=1-22 3, lay,l rl > 0.
P>pg

For n > q let us look at the partial sums

n n
o o
$p (01, oy 0) = 200y (1,€%) and  £,(0g 11,0, 0)) = X @y 1y e,
j=1 j=q+1
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where 6; € [0, 27t]. We can bound the difference by
|Sn(91, ...,Qn) _tn(eq_;’_l, ey Qn)| s

q . n ®©

< D hp e+ X D lag, Iy <
. . J
j=1 j=q+1k=2

q _ n
SPRAGCEOIET DY ry (1=r,) " logp; <
=1 j=q+1

—

. T
Fp, (rp ) [ +8 3 ry logp; <

/A
M=

j=1 j=q+1
q _ oo

<D sup f,, (n,e™)[+8 3 r2logp; < Alg)
j=19;€[0,27] j=q+1 "

V2

-1
as (1 —rp],) < 71
By an inequality of Jessen [17, p. 290—291], writing

|sn|2 < 2|sn - tn|2 +2|tn|2;

. Here A depends only on g and not on n.

we obtain

Jexp(llsn(Gl, oty 0.)19)d6,...d6, <

Ty,

< MA@ j exp(2A1t, (0441, -+, 0,)1dO1...dO, <
T

20A(@)> 2
< ‘ < M@l =K, ®

n
— 2.2
1-22 3 lay,l e
j=q+1

where P, , =P, \ P,. Noting that M, ,. (e**") is just the left-hand side of
(8), we deduce:

M, p, 7)) <K,
where K is independent of n. Thus by Fatou lemma and Proposition 4.11
we conclude that

J‘Ma(w)el‘“”zdw <K.
C

Let us take y such that M, 5 is a continuous function. It is clear
that if we remove all the terms corresponding to p <y, and take ¢ >y
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large enough we obtain exactly the same bound for the function M((Iy )=
=*pep \ﬂyMa,p:
) Mwl?
[MY@re " dw < k.
C

If 92,=B(0,p), B=B(z,p) denote the corresponding closed discs,
2¢ 9, then

AMlzl=p)? jMéy)(w)ldwl = J‘ewz|_P)2Méy)(w)|dw| <
B B
2
< [ MY w)ldw] < K.
B

Let p be large enough, so that 9, contains the support of M; o,
Then

My (2) = My 5, * M) (2) =

= [ M, 5, @M @ = w)ldw| = [ M, 5 @Mz - w)ldw]| <
C

Pp

< s;p My 5 (W) -JMéy) (z — w)|dw| < Ke =7 s;p M; 5, (W).
P C P

As y, p, p are independent of z, we obtain that
M, (z) = O(e ),

According to Corollary 4.6, one can take y large enough so that
M; 5, has continuous partial derivatives of order up to p. We also have

D@D (fxg) =D@P(f)xg = fxD@P ().

Thus, the same arguments as above imply that the required estimate
holds for partial derivatives of M, (z) of any order p. O

Corollary 4.14. The functions M,(z) and M,(z) belong to the
Schwartz space, that is, they go to zero as |z| — o faster than any inverse
power of |z|, as do all their derivatives.

Proof. The statement is clear for M (z) by the above theorem. Now,
MU (2) =F M, (—2). Since & maps Schwartz functions to Schwartz func-
tions the result follows. O

Corollary 4.15.

M, (2, 25) = jMo(w)ipzl,%(w)lde.
C
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Proof. Each side of the above equality is an entire function of 2, 24
(the left one by Proposition 4.8, the right one by Proposition 4.13). These
functions are equal when z, = z; by Proposition 4.11, thus they must
coincide for any 2z, z, €C. O

Remark 4.16. The last corollary also follows from Theorem 4.1,
however we prefer to give a direct proof.

4.4. Proof of Theorem 4.1

We will apply Lemma A from [11, § 5], which is a general result that
allows to deduce from the convergence of averages for a special class of
functions &, the same fact for more general &.

First of all, Corollaries 4.12 and 4.14 imply that M, is a good density
function on R? in the sense of Ihara and Matsumoto, that is, it is non-
negative, real valued, continuous, with integral over R? equal to 1, and
such that both the function and its Fourier transform belong to L' NL*.

By 3.5 the identity (6) holds for any additive character v, of C.
Lemma A implies then that (6) is true for any bounded continuous @,
for the characteristic function of any compact subset of R? or of the
complement of such a subset.

Now, take ¢ (r) =exp(ar). Proposition 4.13 implies that

jMa(z)¢o(|z|)|dz|
C

converges. The same reasoning as in [11, § 5.3, Sublemma] allows us to
see that Avg, .- exp(alC(f ® x,s)[) < 1. This concludes the proof of
Theorem 4.1.

5. Average on Primitive Forms

While working with modular forms it is analytically more natural to
consider harmonic averages instead of usual ones. One introduces the
harmonic weight
r'k—1)

w(f) = R

where
dxdy

Fhw= | @RS

To(W\#
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is the Petersson scalar product, 7 = {z € C: Imz > 0}. We denote by

Avg" G(f) the harmonic average
feB(N)

Avg" G()= 3 WG

fEBL(N) fEBL(N)

It can be proven [16, Corollary 2.10 for m =n = 1] that for squarefree
N we have

so(N) T(N)*log(2N)
oD = o~ ) ©
thus Avg" is an average operator when ~—— kp( ) —1.

fEBL(N)
One has the following interpretation of w(f) via the symmetric
square L-functions [16, Lemma 2.5]:
2m?
(k—1NL(Sym* f, 1)
Theorem 5.1. Assume that N is a prime number and that k is fixed.
Let 0<e<% and T, R>0. Let s= 0 + it belong to the domain o = ¢ + %,

|t| <T, and z and 2’ to a disc Dg. Then, assuming GRH for L(f, s), for any
6 >0 we have

AVgh (g(f7 S, Z) g(f7 S, Z/)) -

w(f) = (10)

feBL(N)
- Z n~m= Z mcz’,x(m) <LeRT,6k N_8/2+6’
n,meN xeJ(n)NJ(m)
(nm,N)=1
and

nggrlwffe\;/gm(g(f s,2)9(f,5,2)) =

>onm™ Y o, My (m).
n,meN xeJ(n)nJ(m)

The convergence of the series is on the right-hand sides is uniform and
absolute in the above domains without the assumption of GRH.

Remark 5.2. In contrast to the situation, considered in Theorem 3.1,
we see that the average depends both on Res and Ims. In fact, the inde-
pendence of Ims in the case of averages with respect to characters is the
corollary of the invariance of Haar measures on C! under rotations.
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Corollary 5.3. Under the conditions of the previous theorem we have

Jim - Avg" 4, (2(f, ) = M (ar, 25) =
feB(N)

= > n’m>” Y ¢ (e, (m).

n,meN xeJ(m)NJ(m)
Proof. We have v, , (£(f,s)) =g(f,s, —2z1) a(f, s, 2, s0

lim Avg" Yy ., (E(f,8)) = > ncm™ C_z,x (M, (M).

N=+ cep (V) n,meN x€J (m)NJ (m)

The corollary follows from the equality c_z, (n) =c, ,(n), which is im-
plied by Lemma 2.2. O

5.1. Naive approach

In this subsection we try to estimate the average in a naive way via
Euler products. This approach works for Res large enough and gives a
formula which turns out to be valid for more general s. The intermedi-
ate calculations will be used again in Section 5.3. All the estimates are
written assuming only that N is squarefree and not assuming that k is
fixed until the very end of Section 5.3.

We have
Avgh @, s, 29,520 = 3 o) 3 a7 mT L) 1, (m).
fEBL(N) fEBL(N) nm>=1

Let T, (n) ={(dy, ..., dy) eNk; d;...md; =n}|. We will use a version
of the Petersson formula proven in [16, Corollary 2.10]. Note that our
weights are slightly different from those used in [16], we follow instead
[31] in our normalization.

Proposition 5.4. If N is squarefree, (m, N) =1, (n, N?)|N, then

S(m,n) = 3 w(f)nf(m)nf(n)=#Mm,nHA(m,n),

feB(N)

where 6 (m, n) is the Kronecker symbol and

A(m,n) = O(k‘% (mn)%N‘l(n, N)Y22(N)%15((m, n)) log(2mnN)),

the implied constant being absolute.
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The conditions of this proposition are in particular satisfied once
(nm, N) =1. We will also use the following trivial bound, when (m, N) #1:

Smnl< Y w(H)TmEw
FEBL(N) (m, N)
@) T(N)?log(2N) \\ 7(m) 7 (n)
_( N +O( Nk5/6 )) SN’ (D
which holds by virtue of (9) and the fact that |n f m)|< _m) since

v/ (m,N)
N is squarefree. Obviously, the corresponding bound is also true if we
assume (n, N) #1 instead of (m, N) #1.

Remark 5.5. In what follows, one can possibly soften our restric-
tions on N (in particular, remove the assumption that N — o) by using
more elaborate bounds on the sums in the case when (mn, N) # 1, ap-
plying directly the construction of an explicit basis of S (N) from B, (N),
in a way similar to [16, Proposition 2.6].

Using the above estimates, we can write

Ave" (a(f,s,2)a(f,5,2) = > w(f) D n m LML, (m) =

fe€BK(N) fEBL(N) n,m
=>n"m* D w0, 0m) =
nm FEBL(N)
=X m Y N m) Y w(Pnm)+
n,m xeJy(n),yedy (m) fE€BL(N)
s N (N)
=>n"m* > cg’x(n)cﬁfy(m)(éi(x, y)(pT-l—A(x, y)) =
n,m x€Jy(n),y€Jy(m) ’ §
(xy,N)=1
+3n7mT Y A m) Y () =
n,m er,\é(n)j\%iJiV(m) feBi(N)
Xy,
N B -
= _(pl(\l ) S S > N ()l (m)+
n,m x€Jy(MNJy(m) ’
(x,N)=1
+>n " m > cfzvx(n)clz\{y(m)A(x, y)+
n,m xely(m),yely(m) ’
(xy,N)=1

+2n7me 3 N el (m)S(x, y).
n,m x€Jy (n),yJy(m)
(oy,N)#1
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The fact that the sum can be subdivided into three parts will be justified
by the absolute convergence of the series for Res large enough.
Put
M) =>n"m™ > N ()l (m).
n,m x€ly(MNJy(m) ’
(x,N)=1
Let us first note that the sum does not depend on N, since clz\’ (M =c, . (n)

if (n,N) =1, and the coefficient c .(n) vanishes, once we have both
(x,N)=1, and (n, N) #1. This allow us to write
M) =Yn"m™ > o (), (m).
n,m xeJ(n)nJ(m)
(nm,N)=1
Our goal is to verify that M (s) gives the principal term of the asymp-
totic behaviour of Avgh (a(f,s,2)g(f,s,2). Iff me¢I(n), which is equiv-

fEBL(N)
alent to I(m) #1(n), the term c, ,.(n) ¢, , (m) vanishes. Therefore,
M(s) = > nm™ Y (Mg (m).
neN, (nm,N)=1 xeJ(n)nJ(m)
mel(n)

Let us define r_(n) to be the largest integer whose square divides n,
and r, (n) to be the least positive integer whose square is divisible by n.

. ky Kk
So,if n=p,'...p,', we have

__kymod 2 k;mod 2 2 2 _ __kymod 2 k;mod 2
n=p; Dy r_(n) ry(n)® =p, Dy n,

and the squarefree part of n is equal to

kymod 2 kmod2 _ T+ (1)
P, Dy = o

Using this notation, we can write for s =0 +it

~ ot (n)\—o—it__, n)r?
=3 S (Fam) T S ()=

n=z1lr=z1 xeJ(n)nJ(m)
(mn,N)=1
20 2it . —2s ry (mr?
= > M r_m*r > Cax (n)czf,x( ) ), (12)
nr=1 xeJ(n)nJ(m) -
(mn,N)=1
r. (mr?
where m == , SO
r_(n)
o 20 ,—20 ry (n)r
SIS X ) % e e o )|
n,r=1 xeJ(n) -

(nr,N)=1
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There are 2¢™ — 1= 2! — 1 different n giving the same r,(n). As
logn
2+loglogn
that the sum M (s) converges absolutely for Res > 1/2:

|l\7[(8)| <, Z ne . n—ZU . r—ZU -nf.nt. r26 .nf = Z n—20+4s Z r—20'+2£.
n,r=1 n=1 r=1

w(n) K by (4), so 2! <, n®, using Lemma 2.1 and (3) we see

Let us now see what happens with the error term. If we put

_ -5 - N N
A()= > nm™* > Y ey (MA(x, y),
n,m=1 x€Jy (n),y€Jy(m)
(xy,N)=1
from the Proposition 5.4 together with the estimate 74(n) < T(n)? <, nf,
and Lemma 2.1 we conclude that
T(N)%logN

1
Nk5/6 Z (mn)—0'+z+8.

m,n=1

A(S)] <,

In a similar way, putting

As)= > nm™* > N ey (mS(x, y),

n,mz=1 x€Jy(n),yedy(m)
(xy,N)#1
we get
1 p(N) 7(N)%log(2N) _
AN < ——| 5 4+0| — mn) =+,
2@l < =T+ o= Dm,;;f )

where p.,i, (N) is the least prime factor of N.

These bounds only make sense for c =Res > 5/4, when the series
converge. For these values of s we conclude that the error terms tend to
0, once pp,i, (N) — o (recall that we assume N to be squarefree). In the
next section we are going to show how the estimates can be pushed to
the left of Res > 5/4.

5.2. Integral representation

. . . 1 .
We introduce the following notation. Let 0 <&’ <& < =, s €C with

o=Res> % +¢, c>max(0,1—0), X =1 a parameter to be specified
later. The symbol < will depend on ¢, R, and T but this dependence will
not be explicitly indicated. As before, we assume only that N is square-
free (and not necessarily prime), and we do not suppose k to be fixed.
We will write g to denote g(f, s, z) when no ambiguity is possible.
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We use the techniques from [11], though it would be possible to em-
ploy the approximate functional equations instead, since they are avail-
able in our case. First, we establish the analogues of the propositions
proven in [11, §2.2].

Lemma 5.6. (i) For Res> 1 + & we have g=g, — g_, where the holo-
morphic functions g, and g_ are defined by

g#f,s,z,X):ﬁ J Frw)eg(f,s+w, 2)Xdw,

Rew=c
and

g_(f,s,z,X):% j Fw)g(f,s+w,z)XYdw.

Rew=¢'—¢

(ii) The function g. has a Dirichlet series expansion
g+ Xp
o=, [, (n)e xn~*
n=1

which is absolutely and uniformly convergent on compacts in C.

Proof. The first statement admits exactly the same proof as the cor-
responding part of [11, Proposition 2.2.1] with Thara and Matsumoto’s
property (A3) being replaced by Lemma 3.2 in our case.

As for the second statement, we have the Dirichlet series expansion

a(f,s,2) = D, L(mn".
n=1
Taking into account that o +c>1, we see that
o(f,s+w,2) =D Lmn~*™"
n=1

is absolutely and uniformly convergent with respect to Imw on Rew =c.
Exchanging the integration and summation and using

ﬁ J 'w)a Ydw =e™9,
Rew=c
we obtain the desired expansion. The absolute and uniform convergence
is clear for Lemma 2.1. O
In what follows we will estimate g, on average, which will give the
main term, the function g_ will on the contrary be estimated individually
for each f. The following lemma bounds g_ in terms of the parameter X.
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Lemma 5.7. Let Res>1/2+ ¢. Then for any f €B;(N), 0<¢' <e,
T >0, for |Im(s)| < T we have

|g—(f7 S, 2, X)l <<g’ (NkX)EIX_S.
Proof. Once again our proof largely mimics that of [11, Proposi-

tion 2.2.13]. We need to estimate the integral

g_(f,s,z,X):% j F'w)g(f,s+w,z)XYdw.

Rew=¢'—¢

Clearly, | X"| = X*~¢ and it is well-known [11, (2.2.9)] that
IN'w) < |Imw|<1/2 exp(—%|lm(w)|),

when |Imw|>1, Rew <, so in our case I'(w) < exp(—|Im(w)|). Lem-
ma 3.2 ensures that, putting u =Im(w) and t =Im(s), we have

log |g(f,s+w,2)| < LN 2 (t+u) =%

Therefore, there exists C=C(T, ¢’) such that

la(f, s+ w)| < exp(CLINK)' =% (log(|u] +1))17*') <
< exp(CE (Nk)1—2 log(|u| + 1)).
So, by comparison with the I'-integral, we have

oo
lo_(f,s+w,z X)| <K Xxee J e‘”(u-l—l)“(Nk)lfze du <
0

< XETT(CLINK) > +1) <
< X7 exp(CL(INK) ™% log(CL(NK)' %)) <
< X7 exp(C'L (NK) ™% 1og (L (NK))) <
<, X Cexp(e'l (NK)) < X* ¢ (Nk)®,
since for Nk large enough depending on T and ¢’,
C'0(Nk)™%*'log({ (Nk)) < &’
holds. O
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5.3. Averaging

We now go back to averaging over primitive forms. We denote for
simplicity g=g(s, f, 2), ¢’ = a(s, f, ') and we adopt similar notation for
g+ and g/,.

First of all, using the decomposition established in Section 5.2, we
note that

Ave" (gg) =
feB(N)
= Avg" (3.0)— Avg" (@) — Avg" (g_d)+ Avg" (@ g).
fE€BL(N) fEBL(N) fEBL(N) fE€BL(N)

Our first goal is to prove that the average

— -5 —ST .~ _ntm
Avg" @)= Y o) X T mT LM (me .
feB(N) fEBL(N) nm=1

gives the main term of the asymptotic behaviour. The calculations of
Section 5.1 allow us to decompose the above average as follows:

Avg" (g, d)) = M(s, X) + As, X) + A/ (s, X), (13)
FEBL(N)
with
~ N s ntm N, <
M(s, X) = % S nim e > N (e (m),
n,m xeJy (mNJy(m)
(x,N)=1

A, X)=>n""m” e

n,m

2

x€Jy (n),y€Jy(m)
(y,N)=1

3 n+m
A'(s,X) =2 n""m™e” x S
n,m x€Jy (n),y€Jy(m)
(o, N)#1
Noting that 0 <1 —e~% <min(a, 1) and fixing any a > 0, we see that

|M(s) — M(s, X)| =

N
Y )y (mMA(x, y),

N ey S, y).

¢ (N) - _ndm —~
=5 dnm S (l—e ) > cﬁx(n)cg’x(m) <
n,m x€Jy (MNJy (m)
(x,N)=1
¢ (N) o —on+m
STy X nImT > e (el )]+
n<aX x€Jy (m)NJy (m)
m<aX (x,N)=1
SO(N) _ _ _ntm
+i X im0 —e ) Y e el m).
nzaX x€Jy (mNJy (m)
or (e, N)=1

mzaX
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The calculations of Section 5.1 together with the observation that (in the
notation of (12)) r2r+ (b)? =mn result in the following bound valid for
any &” > 0:

_ntm
S oam ) Y Nl m)] <.

nzaX x&€Jy (mNJy(m)
e o=
Z (rs)—20+e <L Z r—20+e (aX)1/2—0'+8 /2’
(rs)*zaX rzvaX

while the absolute convergence of the series for M(s) implies

o, —on+m
> nIm T —— > |ci\{x(n)||c]z\f’x(m)| < a.
n<aX x€Jy (mNJy (m)
m<aX (x,N)=1

Taking ¢” small enough so that f=1/2—0 +¢”/2<0 and « satisfying
a=(aX)?, we finally see that

a4

Now, let us turn to the second and the third terms in (13). Once
again, applying the estimates from Section 5.1 we see that for any ¢’ >0
T(N)2logN

Nk5/6

_ _ N 1/2—0+¢" /2 N ”
M (s) —M(s, X)| <z %X 12ro—"/2 < %Xg /2=

1
Z (mn)—0'+z+8”e— % ,
m,n=1

|A($, X)| <<s”

|A/(S, X)l <<s”

1 ©(N) (T(N)zlog(ZN))) otg _min
<L 0] X .
" @™ ( N T NicS/6 mél(mn) e

Bounding the sums via the corresponding improper integrals (cf. [11,
proof of Proposition 2.2.13]), we get

T(N)Z lOng3/2+2€”—2€’

1AG, X)| <o —575 15
/ 1 pN) T(N)*10g(2N) Y 1 14267 —2¢
1A (s, X)| < m( v o )X . (6)

In what follows, we will choose X (as a function of N) in such a
way that the right-hand sides in (14), (15), and (16) tend to 0. With this
choice of X, taking z =2’ and using the absolute convergence of M(s),
we obtain

Avg" |g* <1, Avg" g )P < 1
feEB(N) fEBK(N)
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Let us estimate the remaining terms involving g_ and g’ . By Lem-
ma 5.7 and (9)

Avg" g <o r NKOZ X2 ST w(f) <
feB, (V) feB(N)

©(N) 7(N)*1og(2N)
( N O( NK5/6

We apply the Cauchy—Schwartz to get

<

S

))(NkX) ZS’X—ZS ]

| Avg" @,g)|+] Avg" @_g))I+| Avg" @_g))| <

feB () feB(N) feB(N)
©(N) T(N)%log(2N) i
<o (T +o(Tgms ) ) k)* XE,(7)

since (NkX)%' > (NkX)® and X2 <X~°.
Let us now turn to the case considered in the theorem, by assuming
that k is fixed and N = p is prime. Assuming that ¢” < 2¢, we have

M (s) — M (s, X)| <pn XE'127¢,
log p .
|AGs, X)| <, TX3/2+zg 2

1 "_
IA/(S, X)| <<5” _X1+25 2e

\/ﬁ b
| Avg" @0 )|+ Avg" G_g')l+] Avg" @_g')| <oy p* X%
feB(N) feB(N) feB(N)

Taking X = p'/2, we see that the above bounds lead to

Avg" g(f, s, 2 9(f,s,2) = M()| <5 p~*/**?,
FEBL(N)
where &, which depends on ¢’ and ¢”, can be taken arbitrarily small.
The second part of the theorem follows from the first.

6. Open Questions and Remarks

This section is devoted to a series of questions and remarks to com-
plement the results of the paper. We hope to address at least some of
them in subsequent articles. We start by the topics discussed in Section 3.

Question 6.1. Can Theorem 3.1 be proven in a greater generality?

For example, one can consider L-functions of more general automor-
phic cusp forms and the average taken with respect to their twists by Hecke
characters of imaginary quadratic number fields or algebraic function
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fields with a fixed place at infinity. As indicated in [11], going beyond
imaginary quadratic number fields seems to be tricky since it involves
essentially new problems related to the presence of non-trivial units. One
can also consider averages over quadratic characters in the spirit of [27].

Question 6.2. What is a version of Theorem 4.1 without assuming
GRH?

The unconditional results [10, Theorem 1] and [12, Theorem 1.1]
suggest that it should be possible to prove similar statements in our case.

Question 6.3. Prove an analogue of Theorem 4.1 for modular forms
in the other situations within the framework of the cases (A), (B), (C)
discussed in the introduction.

Some results in this direction were established by Mastsumoto in
[23] in the case (C), that is, the equidistribution of L(f, o +it), when
o is fixed and t €R varies. It seems, however, that, even when consider-
ing averages of Dirichlet L-functions conditionally on GRH, this question
has not been fully investigated, the most advanced results having been
obtain only in the case (A).

Question 6.4. Carry out a more in-depth study of the functions M
and M.

In the case of Dirichlet characters this was done in [6], [7]. One
should be able to write down an explicit power series expansion of
M, (2, 2,) in the variables z,, z,, establish its analytic continuation, study
its growth, its zeroes, etc.

We next switch to the case of averages with respect to primitive
forms of Section 5, where the results are far less complete.

Question 6.5. Can one obtain Theorem 5.1 with weaker assump-
tions on N? Can we let k tend to infinity, while N is fixed? Can we let
k+N— ?

By following carefully the proof of Theorem 5.1, one can see that the
limit statement is still true when N =1 and k — . Indeed, in this case
A is not present and the parameter X cas be chosen to be equal to k'/2.
This suggests that some greater generality should be possible. The idea
would be to use better bounds on averages of the Fourier coefficients of
cusp forms with indices not coprime with N, which should be possible
by a careful treatement of an explicit basis of the space of old forms in
the spirit of [16].

Question 6.6. Prove an unconditional version of Theorem 5.1.

Surprisingly enough, a crude reasoning with Euler products does not
seem to work even for Res > 1. An unconditional version for Res > 1/2
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will certainly be tricky to obtain even if one only considers characters v,
as in[10] and [12].

Question 6.7. Is it possible to establish value distribution results in
the case of harmonic averages over the set of primitive forms?

The reason we could not carry out the study analogous to that of
Section 4 is the absence of a local theory (at least in a straight-forward
way). Indeed, the M, do not seem to admit an Euler product in this case.
One could hope to rely on the interpretation of w(f) via the symmetric
square L-functions (10), though there does not seem to be an easy way
to do that.

Question 6.8. Can one remove the harmonic weights in Theorem
5.1?

At least two approaches are available. The papers [16], [21], [22]
address a similar issue in different situations by using the interpretation
(10) of the weights via L(Sym? f, 1).

A more conceptual way would be to construct the local theory first.
The results of Serre [32] on the equidistribution of the eigenvalues of
Hecke operators T, suggest that the local picture should be fairly clear.
This would allow to establish the value distribution results missing in
the case of harmonic averages. We plan to address this question in a
forthcoming paper.

Question 6.9. Can one prove Theorem 5.1 in greater generality for
other types of automorphic forms?

The first obvious step would be establishing it for L(f ® y, s). For
more general L-functions an appropriate trace formula would be neces-
sary to replace Petersson formula.

Question 6.10. What is a function field version of Theorem 5.1?

The GRH being known in this case, unconditional results should not
be very difficult to establish along the lines of this paper, once proper
definitions are given.

Question 6.11. Establish the properties of M functions in the case
of averages with respect to primitive forms.

Some peculiarities do arise compared to the case of characters. For
example, M, (z,, 2,) is no longer holomorphic in s, since the average does
depend on s and 5. The function is still entire in 2, z, for fixed s. Es-
tablishing its explicit power series expansion, analytic continuation, etc.
seems to be of interest. The growth properties of M seem to be much
more delicate in our case, since they are proven using local results in the
situation of IThara and Matsumoto.
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Question 6.12. Write an adelic version of Ihara’s and Matsumoto’s
results, as well as of our results in the setting of modular forms.

This might shed some light on and give a better understanding of the
functions M, M, as well as of the relation of the global theory to the local
one. One might also hope to be able to deal with the problems related to
units in the number field case (cf. Question 6.1).

Question 6.13. What are the arithmetic implications of our results?

The results of Thara and Matsumoto give us a better understanding
of the behaviour of the Euler—Kronecker constants of cyclotomic fields.
More generally, since the log case of averaging results for Q concerns, in
particular, zeta functions of cyclotomic fields (¢, ) (s), which are simply
the products of L(s, y) over primitive Dirichlet characters of conductors
dividing m, the results of Ihara and Matsumoto can be seen as a first step
in the development of a finer version of the asymptotic theory of global
fields from [34], that gives non-trivial results for abelian extensions. This
is not the case in [34], since infinite global fields, containing infinite
abelian subfields are asymptotically bad in the terminology of loc. cit.

When one takes averages with respect to primitive forms, the results
are close in spirit to the asymptotic study of zeta functions (see [33] for
their definition) of modular curves X,(N), which can be written as

x,an) = T1 L(f,s)

fe€B,(N)

(this function is the normalized L-function of the Jacobian variety of
X,(N)). Establishing a precise relation boils down to answering Ques-
tion 6.8.

Note that even a cruder version of the asymptotic theory in the spirit
of [34] has not been developed in this case. In the function field case this
was to a significant extent done in [35]. A higher dimensional asymptotic
theory in the characteristic zero case is yet to be constructed.
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Dense families of modular curves, prime
numbers and uniform symmetric tensor rank
of multiplication in certain finite fields

(with S. Ballet)

Abstract. We obtain new uniform bounds for the symmetric tensor
rank of multiplication in finite extensions of any finite field I, or IF .
where p denotes a prime number = 5. In this aim, we use the symmetric
Chudnovsky-type generalized algorithm applied on sufficiently dense
families of modular curves defined over F,. attaining the Drinfeld—
Vladuts bound and on the descent of these families to the definition
field F,. These families are obtained thanks to prime number density
theorems of type Hoheisel, in particular a result due to Dudek (2016).

1. Introduction
1.1. Notation

Let IF, be a finite field with q elements where q is a prime power and
let Fg» be an Fy-extension of degree n. The multiplication of two ele-
ments of Fy. is an F-bilinear map from Fg. X [Fg» onto Fe. It can be con-
sidered as an I ;-linear map from the tensor product g ®p, Fyn onto Fyn.

Consequently it can be also viewed as an element T of IF;” ®r, IE‘;,I ®p, Fon
where }F;n denotes the dual of Fg.. More precisely, when T is expressed
as

.
T=>x'®y ®c, D
i=1
where x] €F ., y; €F_, and ¢; €Fs, the following holds for any x, y € Fu:
r
x-y=Tx®y) =D, x (X)y (¥
i=1

Stéphane Ballet, Alexey Zykin, Dense families of modular curves, prime numbers and
uniform symmetric tensor rank of multiplication in certain finite fields, Designs, Codes and
Cryptography, 87 (2019), 517—525.
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Definition 1. The minimal number of summands in a decomposi-
tion of the multiplication tensor T is called the tensor rank of the multi-
plication in the extension field Fg. (or bilinear complexity of the multi-
plication) and is denoted by g (n):

.
pg(n) = min{r | T = fo@yf@ci}.
i=1

It is known that the tensor T can have a symmetric decomposition:

.
T=2x®x ®c. &)
=1

Definition 2. The minimal number of summands in a symmetric de-
composition of the multiplication tensor T is called the symmetric tensor
rank of the multiplication (or the symmetric bilinear complexity of the
multiplication) and is denoted by ,uzy " (n):

,
pg ™ (n) = min{r | T = l_;x;®x;®ci}.

From an asymptotical point of view, let us define the following

. ug™ (k)
M¥™ = limsup , 3
q koo k
)
m>™ = liminf . (€]
q k—o0 k

1.2. Known results

The original algorithm of D.V. and G.V. Chudnovsky introduced in
[11] is symmetric by definition and leads to the following results from
[3], [8] and [7]:

Theorem 1. Let q be a prime power and let n > 1 be an integer. Let
F/F, be an algebraic function field of genus g and Ny be the number of

places of degree k in F /IF. Suppose F [, is such that 2g + 1 < q% (q% -1
then:
i) if Ny >2n+2g—2, then
MZYm(n) < 2n+g_ 1’
ii) if N; +2N, >2n+2g — 2 and there exists a non-special divisor of
degree g—1, then
szm (n) <3n+2g.
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Theorem 2. Let q be a power of a prime p and let n be an integer.
Then the symmetric tensor rank pgr™ () is linear with respect to the ex-
tension degree; more precisely, there exists a constant C, such that for any
integer n>1,

,uzy (n) < Cqn.

From different versions of symmetric algorithms of Chudnovsky type
applied to good towers of algebraic function fields of type Garcia—Stichte-
noth attaining the Drinfeld—Vladuts bounds of order one, two or four,
different authors have obtained uniform bounds for the tensor rank of
multiplication, namely general expressions for C,, such as the following
best currently published estimates:

Theorem 3. Let ¢ =p" be a power of a prime p and let n be an integer
>1. Then:

(i) If q=2, then szm (n) £15.46n (¢f. [6, Corollary 29] and [10]);

(ii) If g =3, then ,uzym (n) £7.732n (cf. [6, Corollary 29] and [10]);

=P
(iid) If g = 4, then p™ (n) s3(1+ 3 7 )n (cf. [7D);
q_3+2(P_1)m

() If p=5, then 3™ () <3(1+ 555 )n (f: [71);

%)n (cf: [1] and [7]);
q—3+(P—1)m

2 )n (. [7D).

(V) If =4, then ‘uzzm(n) $2(1+

i) If p > 5, then ™™ () < 2(1 +
P~ 16

1.3. New results

The main goal of the paper is to improve the upper bounds for
p™ (n) from the previous theorem for the assertions concerning the
extensions of finite fields IF > and IF, where p is a prime number. One of
main ideas used in this paper was introduced in [4] by the first author
thanks to the use of the Chebyshev Theorem (or also called the Bertrand
Postulat) to bound the gaps between prime numbers. More precisely, the
aim was to construct families of modular curves {X;} with increasing
genus g; attaining the Drinfeld-Vladut bound as dense as possible. This
means that these families of modular curves have the maximum possible
ratio of the number of I .-rational points to the genus and such that the

. . . .8
sequence of their genera is as dense as possible, namely lim = =1.

i—ow &
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Later, motivated by [4], the approach of using such bounds on gaps
between prime numbers (e.g. Baker-Harman-Pintz) was also used in the
preprint [13] in order to improve the upper bounds of ,u;';'m (n) where p is

a prime number. In our paper, we improve all the known uniform upper
bounds for ,uzzm(n) and pY™(n) for p > 5. This article is an expansion
of a paper which was presented at The Tenth International Workshop on
Coding and Cryptography (WCC17) [9].

2. New upper bounds

In this section, we give new better upper bounds for the symmetric
tensor rank of multiplication in certain extensions of finite fields IF,» and
IF,,. In order to do that, we construct suitable families of modular curves
defined over I, and F,. In this aim, we need explicit prime number
density theorems, usually called theorems of type Hoheisel. In particular,
by a result of Baker, Harman and Pintz [2, Theorem 1] established in
2001 and by a recent result established by Dudek [12] in 2016, we directly
deduce the following result:

Theorem 6. Let [ be the k-th prime number. Then there exist real
numbers a <1 and x, such that the difference between two consecutive
prime numbers [, and [, satisfies

b~ ST

for any prime I} = x,,.

In particular, one can take a = % with the value of x, that can in

principle be determined effectively, or o= % with x, =exp(exp(33.217)).
Proof. Itisknown that there exists a real number x,, such that for all

. . 21 . .
X > x,, the interval [x —x%, x] with a = 20 contains prime numbers by a

result of Baker, Harman and Pintz [2, Theorem 1]. In particular, if [, > x,
denotes the k-th prime number, it means that the interval [I, [; +[}']
contains the k + 1-th prime number [, ;. Moreover, the value of x, can
in principle be determined, according to the authors. However, to our
knowledge, this computation has not been realized yet.

For a bigger a = g, Dudek obtained recently in [12, Theorem 1.1] an
explicit bound x, = exp(exp(33.217)). More precisely, Dudek proves that
there exists a prime between cubes, namely the interval [n3, (n + 1)%]
contains a prime number for sufficiently large numbers n. From this
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result, we can directly deduce that there exists a prime in the inter-

val [x,x + 3x§] for all sufficiently large x. Moreover, he makes the
result explicit, in that he determines numerically a lower bound for
which this result is valid, namely for x = exp(exp(33.217)). Then, if

we put [x,x+3x§] =[x, x + x*], we deduce that o = % + ¢ with ¢ <

In3

< xpexp(33.217)) for any x > exp(exp(33.217)). O

2.1. The case of the quadratic extensions of prime fields

Proposition 7. Let p =5 be a prime number, and let x, be the con-
stant from Theorem 6.

. . +1
@) If p #11, then for any integer n = pTxa + pT we have

1+¢,(n) I+e,(mMN(p+1)
-3 )n— p—3 -1

sym
wEm o < 2(1+

2n \a—-1
p—S) ’
(i) For p=11and n=(p —3)x,+p —1=8x,+ 10 we have

14¢,(n) 2(1+¢e,(n)N(p—-1
sym p p
,U/p2 (n)$2(1+ p_3 )n_ p_3 )

where g,(n) = (

. n a—1
where g,(n) = (—p — 3) .
(iii) Asymptotically the following inequality holds for any p = 5:
sym 1
My <21+ —p_s).

Proof. First, let us consider the characteristic p such that p #11.
Then it is known ([16, Corollary 4.1.21] and [15, proof of Theorem 3.9])
that the modular curve X, = X,,(11[;), where [, is the k-th prime number,
is of genus g, =1, and satisfies

N1 (X (Fp2)) 2 (p— 1D (g + 1),

where N; (X (Fp2)) denotes the number of rational points over Fpe of
the curve X,. Let us consider an integer n > 1. Then there exist two
consecutive prime numbers [; and [;, such that

(p — 1) (lk+l + 1) > 2n+ 21k+1 -2 (5)

and
p—DU+1) <2n+2[—2 6)
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(here we use the fact that p > 5). Let us consider the algebraic function
field Fy.,/F,. associated to the curve X, of genus [, defined over
IF». Denoting by N;(F/F,>) the number of places of degree i of F;/FF 2,
we get
Nl (Fk+l/]Fp2) = (p — 1)(lk+l + 1) > 2n+ 21k+1 —2.

We also know that [;; — [ <[/, when [} = x, by Theorem 6. Thus

Ly A4+, with () = ll‘:_l. It is easy to check that the inequal-
n—1 1
ity 2g+1<q 2 (g2 —1) of Theorem 1 holds for any prime power q > 5.
Indeed, it is enough to Verify that
T (- 1) 2 20+ e+ 1,
which is true since
T (@ -1 —4x—120

for any x = 0.

Thus, for any integer n > —— p + — the function field Fj, /T
satisfies Theorem 1, so

bym(n) 2n+h g —1<2n+Q+e@NDl—1,

2n P+1
-3

2n 2n _ .
< — a—1
Let us remark that, as [ < p—3’ e(l) < g,(n) = (p _3) , which

with [, < 3 by (6).

gives the first inequality. Now, let us consider the characteristic p =11.
Take the modular curve X, = X,(23I[}), where [, is the k-th prime num-
ber. By [16, Proposition 4.1.20], we easily compute that the genus of X is
g =21, + 1. Tt is also known that the curve X, has good reduction modu-
lo p outside 23 and [.. Moreover, by using [16, Proof of Theorem 4.1.52],
we obtain that the number of [ .-rational points over of the reduction
X,./p modulo p satisfies

uy(p—1)/12
Ny (Xi (Fp2)) = Né)eg—AN Z2(p—-DUl+1D)

in the notation of loc. cit. Let us take an integer n > 1. There exist two
consecutive prime numbers [; and [, such that
2(p — 1) (lk+l + 1) > 2n+ 2(21k+1 + 1) -2

and
2p—-DU+ 1) <2n+2QL+1D) -2,
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i.e.

(P—Dyr+1) >n+20 4, )
and
Let us consider the algebraic function field F,; /Isz associated to the
curve X of genus g =2l +1 defined over F,.. We have

Nl(Fk+1/F 2) 2(p 1)(lk+1 + 1) > 2n+4lk+1
As before [, < (1 + (), W1th 8(lk) =0 1 It is also easy to

check that the inequality 2g+1<q T (q P — 1) of Theorem 1 holds when
q is a power of 11, which follows from the fact that

11443 (117 — 1) > 8l +3.

Thus, for any integer n = (p — 3)x, + p — 1, the algebraic function
field Fy.,, /T, satisfies Theorem 1, so

bym(n) 2n+21k+1 < 2n+2(1+8(lk))lk

with [, < —=
p

p—1
TB—mby (8)

n n o1 . .

We remark that as [}, < FEL e() <ep(n) = (m) , which gives
the second inequality of the proposition.

Finally, when n — 4o, the prime numbers [, — +oo, thus both for
p#11 and p =11 the corresponding &, (n) — 0. So in the two cases we
obtain svm 1
MP{ < 2(1 + m) [l

Remark 8. It is easy to see that the bounds obtained in Proposition
7 are generally better than the best known bounds (v) and (vi) recalled
in Theorem 3. Indeed, it is sufficient to consider the asymptotic bounds

which are deduced from them and to see that for any prime p =5 we
have pi 3 < P p— and pi 3 233 respectively.
p=3+(-1 FES] 16

Remark 9. Note that the bounds obtained in [13, Corollary 28] also
concern the symmetric tensor rank of multiplication in the finite fields
even if it is not mentioned. Indeed, the distinction between ,uzym (n) and
g (n) was exploited only from [14]. So, we can compare our Proposi-
tion 7 with Corollary 8 there. Firstly, note that the bounds in [13, Corol-
lary 28] are only valid for p = 7. Moreover, the only bound which is better
than our bounds is the asymptotic bound [13, Corollary 28, Bound (vi)]
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given for an unknown sufficiently large n, contrary to our uniform bound
with a= % for n = exp(exp(33.217)).

2.2. The case of prime fields

Proposition 10. Let p =5 be a prime number, let x, be defined as in
Theorem 6, and €,(n) as in Proposition 7.

-3 1
@A) If p #11, then for any integer n = pTxa + % we have

4
‘ “(1+¢,() 2(1+e,M)(p+1)
M;ym(n) < 3(1+ 3 p_; ) - ;—3

(i) For p=11and n=(p —3)x,+p —1=8x,+ 10 we have

4
3 +e,(n) 41 +e,m)(p—1)
sym 3 p . P p
s (n)$3(1+ >3 p=3
(iii) Asymptotically the following inequality holds for any p = 5:
4
sym 3
M < 3(1+ p_g).

Proof. It suffices to consider the same families of curves as in the
proof of Proposition 7.

When p # 11 we take X, = X,,(11l;.), where [, is the k-th prime num-
ber. These curves are defined over I, hence, we can consider the as-
sociated algebraic function fields F;/F, defined over F, and we have
Ny (Fi/Fp2) =Ny (F/F,) + 2N, (F /F,) = (p — 1D (I + 1), since Fi /2 =
=F/F, ®p, Fp2 for any k. Note that the genus of the algebraic function
fields Fy/IF, is also g =14, since the genus is preserved under descent.

Given an integer n > 1, there exist two consecutive prime numbers
[, and [}, such that

and
p—DU+1D <2n+2 —2. 10)

Let us consider the algebraic function field F;,/F, associated to the
curve X;,; of genus [, defined over F,. We get

Nl (Fk+1/]Fp) + 2N2(Fk+1/]Fp) > (p - 1)(lk+l + 1) > 2n+ 21k+1 —2.
As before [} ; < (1 4+ (), with e([j) = l,‘f‘l, and from the proof of
the previous proposition we know that the inequality 2g+1<q T (q% -1
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-3 + 1
of Theorem 1 holds. Consequently, for any integer n > pTx + 22 ,

the algebraic function field Fy,/FF, satisfies Theorem 1, part ii) since by
[5, Theorem 11 (i)] there always exists a non-special divisor of degree
8kt1— 1 for p=5. So

wm(n) < 3n+ 2l < 3n+2(1+ ()

% p+1 3 by (10). As before, £(ly) < ¢, (n)—( )a 1

When p = 11 we use once again the family of curves Xk XO (231).
They are defined over IF,,, hence we can consider the associated algebraic
function fields F; /IF, over I, and we have

Ny (F/F,2) = N1(F/F,) +2N,(F/F,) = 2(p — D + 1.

The genus of the algebraic function fields F; /IF,, defined over I, is also
gr =2l + 1 since the genus is preserved under descent.

Given an integer n > 1, there exist two consecutive prime numbers
[ and [, such that

200 — D)y +1) > 20422 +1) — 2

and
20— DU +1) <2n+22L+1) -2,
i.e.
=D+ >n+20, an
and
(p—DU+1) <n+2L. (12)

Let us consider the algebraic function field F;, /T, associated to the
curve X of genus g =2l + 1 defined over IF,. We get
Ny (Fiy1/Fp) 42N, (Fiyq [Fp) =
? 2(p — 1) (lk+l + 1) > 2n + 2(21k+1 + 1) — 2.
As above [ < (1 + e ), with e(l) = l,?_l, and the inequality

2g+1<q T (q% —1) of Theorem 1 holds. Consequently, for any integer
nz=(p —3)x,+p — 1, the algebraic function field Fy, /T, satisfies Theo-
rem 1, part ii) since, as before, there exists a non-special divisor of degree
8k+1 — 1 by [5, Theorem 11 (i)]. So,

u;ym(n) <3n+2g1 <3n+22L 4 +1) <3n+2(1+¢€),
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-1
with [}, < B °__ % by (12). We can also bound

-3

elly) < Sp(n) — (pzs)a—l.

Finally, when n — 4o, the prime numbers [, — +oo, thus both for
p#11and p=11, ¢,(n) — 0. So we obtain M™ < 3(1 + ;—g) O

Remark 11. It is easy to see that the bounds obtained in Proposition
10 are generally better than the best known bounds (iii) and (iv) recalled
in Theorem 3. Indeed, it is sufficient to consider the asymptotic bounds
which are deduced from them and to see that for any prime p =5 we
have

4 4,
p - 3= 3é(p —Dp
P3T 74T
4/3 8 .
and 7-3<3p-3 respectively.
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