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Alexey Zykin (––)

On June , , Alexey Zykin, a brilliant mathematician and pro-

fessor, our dear friend and colleague, would have turned .

Alexey was born in Moscow in . His parents are not mathemati-

cians: his father Ivan Semenovich is a professor of legal studies, one of

the leading Russian specialists in private international law and public

commercial international law, his mother Yulia Ivanovna is an economist

specializing in foreign trade.

At the age of  Alexey was admitted to one of the best high schools

in Moscow, School No. , to a class majoring in mathematics. The core

math courses in his class were taught by Rafail Gordin and Petr Sergeev.

Among those who taught them advanced mathematics, were such top-

level research mathematicians as Alexander Kuznetsov and Valentina

Kirichenko. As early as in his school years, Alexey became interested in

number theory; in particular, he thoroughly studied the famous textbook

by Ireland and Rosen.

In , during his final high school year, Alexey was admitted to the

Independent University of Moscow, and in , after graduation from

high school, to the Mechanics and Mathematics department of Moscow

State University, together with most of his classmates. During the first

year of his undergraduate studies, he started doing his own research

under the supervision of Professor Michael Tsfasman. Alexey’s first re-

search paper, “Brauer––Siegel and Tsfasman––Vlădu̧t theorems for almost

normal extensions of global fields” was published when he was on the

fourth year of his undergraduate studies. During all of his undergraduate

and graduate years, Alexey continued working under the supervision of

Michael Tsfasman, who had the most significant influence on both the

subject-matter and the style of Alexey’s mathematical research.

After graduating cum laude from the Independent University in 

and from the Moscow State in , Alexey, a graduate student of Steklov

Mathematical Institute, obtained a scholarship for graduate studies from

the Government of France. This scholarship entitled him to spend six

months per year in France. Thus Alexey became a graduate student at

the University of Aix––Marseille II in Luminy, near Marseille, under joint

supervision of Tsfasman and Serge Vlădu̧t. In June  he defended his

Ph.D. thesis in France, and then, in October , in Russia.
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At the present time young mathematicians rarely find a permanent

academic job right after their Ph.D. thesis, usually spending several years

as a postdoc before that. But this was not the case with Alexey: in  he

obtained an Assistant Professor position at the newly created Department

of Mathematics of Higher School of Economics, in Moscow. For several

years he was the youngest faculty member of this department, and cer-

tainly among the most active ones. He taught numerous courses, compul-

sory and elective ones, both at HSE and at the Independent University.

He also organized numerous seminars and supervised several undergrad-

uate students, who did their research in various areas, not only in num-

ber theory. For instance, one of HSE undergraduates, Dmitry Grischenko,

published a paper on the mathematics of origami, written under Alexey’s

supervision. Every year in –– Alexey obtained the HSE Award for

Teaching Excellence, based on the results of student polls.

Alexey was a gifted administrator and organizer of various events.

Among his main achievements in this area, let us mention the creation

of a summer school “Algebra and Geometry” in Yaroslavl. This school

was launched in ; since then, it is being held every year. It is aimed

at senior undergraduate students and Ph.D. students; in a certain sense,

this makes it a successor of the famous summer school “Contemporary

Mathematics” in Dubna, aimed at senior high school students and first-

second year undergrads. Alexey also participated in the Dubna school,

first as a student and later as an instructor. Also in –– Alexey was

the head of the Laboratory of algebraic geometry and its applications at

the Higher School of Economics.

In , at the age of less than  (again an exceptional case!),

Alexey obtained a permanent professor position in France: more pre-

cisely, in the most remote part of it, at the University of French Polynesia,

in Papeete, Tahiti. But, despite being physically present in the opposite

point of the globe, he kept participating in the mathematical life in

Moscow: he kept contacts with his Moscovite colleagues, supervised

students and came to Russia every summer to participate in the Yaroslavl

school. A couple of months before death, he was appointed head of

GAATI (Algebraic Geometry and Applications to Information Theory)

research group at his university.

Alexey’s interests were not at all limited to mathematics: he was a

polymath, had a good knowledge of literature and music, fluently spoke

English and French, had a taste in wines and good cuisine, loved to travel

(it seems that he had been nearly everywhere in the world, from the
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Himalayas to Kilimanjaro), practiced sports, especially rock climbing and

diving…

On April , , Alexey Zykin, his wife Tatiana Makarova and a

diving instructor, Gilles Demée, died while exploring an underwater cave

in Ahe atoll in the Tuamotus, French Polynesia.

Alexey left a broad scientific heritage that consists of  published

works (two of them being published posthumously). For his results he

obtained prestigious prizes: Moscow Mathematical Society Award (),

“Dynasty” Foundation Award (), and others. His research was mostly

in asymptotic theory of global fields and arithmetic varieties. This part of

modern mathematics is developed extensively and lies in between ana-

lytic number theory, algebraic number theory, and algebraic geometry.

Its foundations were established by Michael Tsfasman and Serge Vlădu̧t.

Let us say some words about this domain. Important mathematical

objects of study are systems of polynomial equations with integer coeffi-

cients or, more generally, arithmetic varieties. Note that one-dimensional

case is just the theory of global fields. To an arithmetic variety one asso-

ciates a complex-analytic function in one variable, called its zeta func-

tion. There are deep relations between analytic properties of the zeta

function and properties of the arithmetic variety. Each new result to-

wards this relationship is a true breakthrough. It turns out that, given an

infinite family of global fields or arithmetic varieties, in a wide range of

cases the limits of the zeta functions have many remarkable properties,

that reflect many features of varieties themselves. Here, an important

condition on the family is its being asymptotically exact. However, this

is not a very restrictive condition, since any infinite family contains an

asymptotically exact subfamily. These are the questions studied in the

asymptotic theory of global fields and, more generally, of arithmetic va-

rieties. Another source of interest in these investigations is provided by

numerous applications in coding theory and cryptography. Zykin made

fundamental contributions in these domains.

All of Zykin’s papers are wonderfully written, with perfect style and

crystal clarity. Key issues of the reasonings are explained in minute de-

tail. Many papers contain lists of problems for further research. Besides

their high scientific value, Zykin’s papers can serve as an excellent intro-

duction to the asymptotic theory of global fields and arithmetic varieties

for a wide range of mathematicians.

Now let us describe Zykin’s papers in more detail.
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In the paper [] he proves a strengthening of the classical Brauer––

Siegel theorem. Namely, given a tower of number fields {Ki}, one con-

siders the limit of the ratio log(hKi
RKi

)/gKi
, where gKi

= log
Æ
|DKi
| and

hKi
, RKi

, DKi
denote the class number, the regulator, and the discriminant

of Ki, respectively. The classical Brauer––Siegel theorem claims that if

either all the fields Ki are normal over Q, or the Generalized Riemann

Hypothesis (GRH) holds for them, then under certain additional con-

ditions the limit equals 1. In Zykin’s paper under the same conditions

(the so-called asymptotically bad case in the terminology of Tsfasman––

Vlădu̧t) an analogous result is proved for the tower of almost normal

fields (Theorem ). Also, he observes that results of Tsfasman––Vlădu̧t on

the generalization the Brauer––Siegel theorem give an analogous state-

ment for asymptotically good towers as well. Besides, under the assump-

tion of GRH, Zykin constructs new examples of towers with the limit

of the Brauer––Siegel ratio being closer to the lower bound than in the

examples known before (Theorem ).

The article [] is a survey of results by Tsfasman, Vlădu̧t, Zykin,

and Lebacque on families of global fields and of results by Kunyavskii––

Tsfasman and Hindry––Pacheko on families of elliptic curves over func-

tion fields and number fields, respectively. Besides, for an asymptotically

exact family {Xi} of varieties of dimension d over a finite field, a theorem

on the limit of residues at s=d of the zeta functions ζXi
(s) (Theorem .)

is proved.

Further, in [] Zykin considers an elliptic curve E over a function field

K and a tower {Ki} of extensions of K, and studies the asymptotic behavior

of L-functions LEi
(s) of elliptic curves Ei= E×K Ki over the fields Ki. He

obtains a statement on the limit of the leading coefficients in decomposi-

tions of LEi
(s) in Taylor series at s=1 (Theorem , part ). Note that it

makes sense not only to consider the limits of residues and leading coeffi-

cients of zeta and L-functions, but also to study the asymptotic behavior of

the functions themselves as functions of a complex variable in a suitable

domain. Zykin presents in [] a statement on the asymptotic behaviour

of functions log LEi
(s) on the domain Re s>1 (Theorem , part ). Com-

plete proofs of these statements are given in [].

The note [] contains a brief statement of results of the paper []. The

main results of [] are as follows. For an asymptotically exact family of

number fields {Ki}, one studies the asymptotic behavior of the logarithms

of zeta functions logζKi
(s). In all the results GRH is assumed. It is proved

that in the domain Re s>1/2 the limit of functions log((s−1)ζKi
(s))/gKi
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is equal to the logarithm of the so-called limit zeta function logζ{Ki}
(s) of

the family {Ki} introduced before by Tsafsman and Vlădu̧t (Theorem ).

This gives a conceptual explanation of the generalized Brauer––Siegel

theorem and also, as an application, leads to new results on limits of

the Euler––Kronecker constants, which are analogs for numbers fields of

known results by Ihara for function fields (Corollary ). Besides, Zykin

obtains a nontrivial upper bound for the limit of the logarithm of the

leading coefficients in decompositions of ζKi
(s) at s=1/2 (Theorem ).

In the proofs, bounds on the logarithmic derivative of zeta functions on

the critical strip and results on the asymptotic behavior of zeroes of the

zeta functions on the critical line in families of number fields are used.

The short article [] announces the results from []. Zykin’s joint pa-

per [] with Gilles Lachaud and Christophe Ritzenthaler gives an answer

to an important question of the great mathematician J.-P. Serre: how to

determine whether a principally polarized abelian threefold (A, a) over

a field k⊂C is the Jacobian of a curve over k? To do that, the authors

use a certain arithmetic invariant χ18(A, a,ω)∈ k, where ω is a basis in

the space of regular 1-forms on A. This invariant is expressed in terms

of an analytic Siegel modular form eχ18 and allows one to distinguish

abelian threefolds which are isomorphic over a quadratic extension of

the ground field. Combining this with a result of Serre, the authors ob-

tain an answer to the initial question (Theorem ..). Essentially, the

answer is reduced to the statement that (A, a) is the Jacobian of a non-

hyperelliptic curve if and only if χ18(A, a,ω) is a non-zero square in k.

Besides, in the paper, one can find a new simple and nice proof of the

classical formula of Klein, which is closely related to the above question and

has to do with the equality Disc(F)2
=χ18(A, a,ω), where F(x1, x2, x3) is

a smooth homogeneous polynomial of degree 4 and A is the Jacobian of

the corresponding smooth plane quartic with the natural polarization a

and a natural basis of 1-forms ω (Theorem ..).

Another short note [] contains statements of results from []. In

Zykin’s joint paper [] with Philippe Lebacque, the authors investigate the

asymptotic behaviour of the logarithmic derivatives ZK (s)=ζ′
K

(s)/ζK (s)

of the zeta functions ζK (s) of global fields K. For all results on number

fields the authors assume GRH. Note that, since the zeta function ζK (s)

is given by an infinite product, the function ZK (s) is determined by an

infinite series. In [], the authors first prove a fine explicit bound on the

approximation error in the expression of ZK (s) as an infinite series on

the domain Re s>1/2 (Theorems . and .). In the proof of this result,
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they demonstrate their extraordinary ability to use complicated analytic

techniques and Weil’s explicit formulae. In particular, the bound leads to

a new proof of the so-called basic inequality in the asymptotic theory of

global fields (Remarks . and .). Then, the above bound is applied to

the logarithmic derivative Z{Ki}
(s) of the limit zeta function ζ{Ki}

(s) of an

asymptotically exact family of global fields {Ki}. Namely, they obtaine a

new bound on the approximation error in the expression of Z{Ki}
(s) as

an infinite series on the domain Re s>1/2 (Corollary .). Besides, the

authors find an explicit bound for the approximation error in the expres-

sion of the value Z{Ki }
(1/2) as an infinite series (Theorem .). Finally, this

implies an explicit bound on the approximation error in the expression of

the value logζ{Ki}
(1) as an infinite series (Corollary .). The latter bound

is a far reaching strengthening of the classical Brauer––Siegel theorem.

The joint paper with Lebacque [] is a survey of the asymptotic

theory and serves as a wonderful introduction to it. First, the foundations

of this theory established by Tsfasman and Vlădu̧t are explained: limit

invariants, asymptotically exact families, the basic inequality, which is a

far reaching generalization of both the Odlyzko––Serre estimates and the

Drinfeld––Vlădu̧t inequality (Section ). Then they discuss generaliza-

tions of the Brauer––Siegel theorem obtained by Tsfasman, Vlădu̧t, and

the authors of the paper, the asymptotic behaviour of zeta functions and

their zeroes, and also the amazing relations between these topics and

the limit zeta function (Section ). Then they give examples of towers

of function fields that are asymptotically optimal, that is, that reach the

bound from the basic inequality (Section ). Such towers correspond

to iterated coverings of curves over a finite field that have the maxi-

mal possible number of points. In the survey, there is a wide range of

examples of asymptotically optimal towers constructed by Ihara, Tsfas-

man, Vlădu̧t, Zink, Elkies, Garcia, and Stichtenoth. Besides, the authors

discuss a higher-dimensional generalization of the asymptotic theory of

global fields (Section ). Namely, they formulate results by Lachaud––Ts-

fasman that generalize the basic inequality to asymptotically exact fam-

ilies of varieties over a finite field. Also, conjectural generalizations of

the Brauer––Siegel theorem to the case of abelian varieties over a func-

tion field proposed by Kunyavskii––Tsfasman and Hindry––Pacheko are

stated. Finally, they briefly mention the theory of abstract L-functions

over a finite fields, which is explained in more detail in the next paper.

The paper [] contains the foundations of the general asymptotic

theory of varieties over finite fields and over function fields. Main results
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in the asymptotic theory of function fields are generalized to the case

of infinite families of abstract zeta and L-functions over a finite field.

To do this, Zykin carefully analyzes which general arithmetic properties

of zeta functions lead to these results. It turns out that, actually, it is

enough to require only an analog of the statement on absolute values

of Frobenius eigenvalues and also an analog of the fact that numbers

of points are nonnegative, or, even more, its weakening given by the so-

called asymptotic very exactness of families (Definition .). Having de-

veloped explicit formulae in this abstract set-up (Section .), the author

deduces from them many nontrivial results. Let us note a theorem on

the limit distribution of zeroes (Theorem .), a version of the general-

ized Brauer––Siegel theorem on the asymptotic behavior of zeta functions

(Theorems . and .), and a version of the basic inequality (Theo-

rems . and .). As an application, Zykin obtains a result on the asymp-

totic behaviour of higher Euler––Kronecker constants for families of func-

tion fields, which strengthens known results by Ihara (Corollary .),

and also obtains a new proof of the basic inequality (Remark .). More-

over, all results are well illustrated by applications to families of elliptic

curves over function fields (Corollary ., Theorem .).

In the short and elegant paper [], the author studies families of

primitive cusp forms fi of level Ni and weight ki such that the number Nik
2
i

tends to infinity. For each form fi, he considers its L-function L fi
(s) with

the argument shifted by (k−1)/2 as compared to the standard definition,

so that the functional equations relates L fi
(s) and L fi

(1− s). Under the as-

sumption of GRH for L-functions L fi
(s), he proves that asymptotically their

zeroes become uniformly distributed on the critical line (Theorem .).

This beautiful result is obtained with the help of explicit formulae and

other analytic methods.

In another joint paper with Lebacque [], for any curve X over a

finite field Fq, the authors give a lower and an upper bound for the class

number h of X , that is, for the number of points on the Jacobian of X

over Fq: hmin(N)¶ h¶ hmax(N) (Corollary .). The numbers hmin(N)

and hmax(N) depend on a natural parameter N , which can be chosen

arbitrary, and are expressed explicitly in terms of the numbers of points

on X over the fields Fq f , where 1¶ f ¶ N . The proof of the bounds is

based on an explicit formula for zeta functions of curves found by Serre,

in which the authors make a suitable choice of the test function, and is

also based on fine bounds on terms in the explicit formula. It is shown

in the paper that for asymptotically exact families of curves {Xi}, the se-
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quences log hmin(N , Xi)/gi, log h(Xi)/gi and log hmax(N , Xi)/gi have the

same limits when N , i→∞ (Remark .). Moreover, the authors present

many of examples of curves from various asymptotically optimal towers,

for which the above lower bound hmin(N) with suitable N is far better

than many other known lower bounds for the class number found by

other researchers (Section ).

In [], also joint with Lebacque, the authors consider primitive cusp

forms f and Dirichlet characters χ and study distribution of values of

the function L ( f ⊗ χ, s), which denotes either the logarithm, or the

logarithmic derivative of the L-function L( f ⊗χ, s). More precisely, for

a function Φ(w) of a complex variable from a rather wide class, the

authors consider the average value
1
m

∑
χ

Φ(L ( f ⊗χ, s)), where s is fixed

and χ runs over all Dirichlet characters with a prime conductor m.

Under the assumption of GRH for L( f ⊗ χ, s) it is proved that when

m→ ∞, this average value tends to
Í

C

Φσ(w)Mσ(w)|dw|, where the

function Mσ(w) is defined explicitly in terms of the form f and of the

real number σ=Re s (Theorem .). One can say that Mσ(w) is the limit

distribution of values of the function χ 7→L ( f ⊗χ, s). Moreover, also

under the assumption of GRH for L( f ⊗ χ, s), for any quasi-character

ψ: C→ C∗, the authors prove statements on the limit of the average

values Avgχψ(L ( f ⊗χ, s)) and Avgh
f
ψ(L ( f ⊗χ, s)), where they take

averages with respect to χ and f , and the limit is taken with respect

to a prime conductor m of χ and a prime level N of f , respectively

(Theorems . and .). The average on f is taken with certain special

harmonic weights.

In the joint article with Stéphane Ballet [], using known results on

intervals between primes, the authors construct asymptotically optimal

towers of modular curves over a finite field, which lead to new upper

bounds on the symmetric tensor rank of multiplication in certain finite

fields (Propositions  and ). In a wide range of examples, these bounds

are better than the bounds known before.

We hope that this collection of works will be quite useful for math-

ematicians from various domains and will help the memory of our dear

Aliosha be longlasting.

Sergey Gorchinskiy, Evgeny Smirnov, Michael Tsfasman
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Theory, Presses Univ. Franche-Comté, Besançon, , ––.
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Words of colleagues and friends from the

website of the Faculty of Mathematics of HSE

Alexei Pirkovskii

I remember Liosha at the time he was a student at the Independent

University. In – he attended my lectures on functional analysis

and spectral theory there, and it was a real pleasure to discuss mathe-

matical questions with him. It was striking how deep he could see things

that, frankly, did not directly concern his algebraic specialization. Even

among extremely bright students of the Independent University, Liosha

was distinguished by his brightness.

Several years ago, already at the Faculty of Mathematics of HSE,

many times I involuntary listened to Liosha’s lectures on number theory

(the open door of his lecture room was just opposite the open door of my

office). I listened with admiring envy –– the lectures were just brilliant,

both from the point of view of clarity and consistency of exposition and

from the point of view of oratory. Few are those able to do the same.

We lost a talented mathematician, an outstanding teacher and sim-

ply a very good man. I cannot get out of my mind the lines of the song

of Yury Vizbor : “The best of the best are leaving us earlier than others,

it is strange...”

Ivan Cheltsov

For a long time, I heard about Liosha Zykin as a young and very

talented mathematician working at HSE. But I got acquainted with him

only when he started heading the Laboratory of Algebraic Geometry.

From the first meeting I realized that Liosha was very bright and good.

I should add that, somehow, he did everything with ease: in mathemat-

ical research, organizing summer schools in Yaroslavl, heading the lab-

oratory, teaching, traveling, he succeeded in everything. When Liosha

got his post in Tahiti I was fantastically glad for him. To be engaged in

mathematical research and to head the scientific laboratory in a place

with an ideal climate and European civilization. One can only dream

about it. Naturally, it was sad that he was leaving. But then it turned out

that Liosha preserved his ties with Moscow and continued to take part

in Moscow mathematical life. Everything was very favourable for him.

 Russian singer and songwriter
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Young, gifted, active, athletic, a beautiful wife, living both in Tahiti and

in Moscow.  years. The whole life is ahead. The news of his death was

a shock. It is very difficult to accept.

Vladlen Timorin

It is an irreplaceable loss for mathematics and for all of us. Liosha

was a talented scholar. His achievements were highly appreciated at the

international level. The bright star died out though it could illuminate

much more in science. We are mourning this loss and present our con-

dolences to relatives and friends of Alexey and Tatiana. We will always

remember them.

Ian Marshall

How awful! This is terribly sad news indeed, and a major loss for our

Moscow community.

Fedor Bogomolov

The death of Liosha Zykin is a terrible tragedy. It is a great loss for

all who knew him and worked with him. I got acquainted with him when

he was a student attending the summer school in Goettingen. It is painful

to write about him in the past tense, a young, full of strength and energy

person who has already achieved a lot with bright prospects ahead of him.

Many opportunities were opened to him as a talented scientist and orga-

nizer. Last years, I worked a lot with him on matters concerning the Labo-

ratory. It is worth saying that in spite of his youth and lack of experience

he proved to be an excellent organizer and leader. A gentle and tactful

person by nature, he could be efficient and persistent. Liosha was an abso-

lutely reliable person to whom one could always turn to in tackling serious

matters. He continued to participate actively in the work of the Laboratory

even when he left for Tahiti, particularly assuming the most difficult part

of work relating to the functioning of the yearly school in Yaroslavl.

He was gifted in various fields, knew a lot and was interested in

many things which lay far apart from mathematics. That was why it was

always interesting to talk to him. Alexey was a remarkable person. My

memory of him and sadness of his loss will stay forever in my heart.

Vladimir Zhgoon

It is hard to believe in the sudden and bitter loss of our dear friend

Liosha Zykin. He was an outstanding mathematician, excellent lecturer and

very responsible teacher who was always ready to help his students. I also
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remember him as a very active tourist. When visiting practically any coun-

try he knew always where to go and what to see. He was a connoisseur of

a delicious cuisine and good wine. As a traveler he visited many interesting

and extraordinary places. He enjoyed talking about them and did it vividly.

Rest in peace, dear Liosha!

Pavel Solomatin

I still cannot believe in what happened. Alexey Ivanovich was not

only my main teacher. He was a true friend, the one who could serve as

an example and who could be always consulted in one’s hour of need.

Why I did not quit my studies at the Faculty of Mathematics in moments

of despair? Why did I start to study number theory? Why L-functions?

Why curves over finite fields? The answer is simple. Thanks to Liosha.

We worked together starting from his first days at the department in

 and continued our cooperation even after both of us left Moscow.

I asked him quite recently whether he would be willing to act as one of

the referees for my thesis and he naturally gave his consent. I planned to

write him a letter one of these days to seek advice on what else to do in

my life, but it was too late. I always thought that I would have time to

write with him more than one article, to spend time together somewhere

in the mountains in France with a bottle of good wine, to demonstrate

that the efforts he put in us were not futile. But I was not in time to do

it, and that makes my pain even greater.

Sergey Gorchinskiy

I think that for all of us this tragic news is hard to take in. I knew

Liosha for many years. Starting from his first year at the University, we

were studying together a lot, attended the same seminars. He was an

outstanding person. Probably, in Moscow there is almost no one anymore

who understands algebraic and arithmetic geometry as well as Liosha

did, and at the same time is quite familiar with advanced methods of the

analytic number theory and clearly understands applications to coding

theory and cryptography. This amazing combination was a characteristic

feature of all his mathematical creativity.

As for his early results, I would like to recall a substantial strengthen-

ing of the classical Brauer––Siegel theorem on the behavior of the regu-

lator and the discriminant for a wide range of families of number fields.

Together with P. Lebacque he obtained a new fine estimate of the log-

arithmic derivative of zeta functions of global fields that they used for

a wide generalization of the explicit formula in the Brauer––Siegel the-
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orem itself. Liosha was intensively developing the theory of asymptotic

zeta functions, in particular, its version for families of modular forms.

He developed foundations of the general asymptotic theory of varieties

over finite fields. Together with his coauthors Liosha answered an im-

portant question of the great mathematician J.-P. Serre how to determine

whether a principally polarized abelian threefold is a Jacobian of a curve

over a non-algebraically closed field of characteristic zero. Serre evalu-

ated this result as being quite high.

Liosha was a very good and reliable friend. One could always turn

to him for help. It is amazing how he was equally attentive and patient

to all people who surrounded him.

He was very sensible to life and was a great connoisseur of its beauty.

His fine taste was apparent far beyond mathematics: in art, in communi-

cating with people, in languages, in his hobbies. Liosha was an extremely

well-educated person, for example, he had a deep knowledge of litera-

ture, especially French. Liosha was a fantastic organizer, incredibly com-

bining gentleness and tactfulness in communicating with people with the

ability to carry to completion all he did.

May his memory live forever. Let us remember him as often as pos-

sible, in this way we could help him now.

Alexey Rudakov

How awful! Liosha Zykin, young, energetic, and cheerful. He had been

always that way in corridors and rooms of our building in Vavilova street so

recently. And he is not with us any longer. I mourn him deeply and present

condolences to his relatives and dear ones, to his friends and colleagues!

Sergey Loktev

The thirty-two years of Alexey’s life were bright and interesting. I

was lucky to know him well both as a colleague (we taught calculus

together to students of the Faculty of Mathematics who graduated in

) and as a friend (we did some rock climbing together, travelled to

Vorgol and El Chorro).

I would like to single out two of his qualities that come to my mind.

First, his elegance that attracted your attention from the first moments

of your contact with him. He was strikingly tactful and at the same time

sincere, open to everything new and unusual, he respected life in all its

expressions. Second, and his friends were very much aware of this, he

was really fearless. I mean that he might experience fear but it never

governed his thoughts and actions.



 Words of colleagues and friends

Our exchange of letters stopped with his words that “the rainy sea-

son is coming to its end, life is becoming even better”. I did not have time

to reply to him…

May his memory live forever in our hearts!

Armen Sergeev

I am stunned by the news that Alexey Zykin and his wife died when

diving.

I had the opportunity to take part in his life, though quite formally,

when I was a supervisor in his post-graduate course. He was a pleasant

person and certainly a very gifted mathematician.

It is a great pity to lose people so young, when even without that,

we have a constant shortage of young talented people.

I express my heartfelt condolences to the parents of Alexey and of

his wife.

Valentina Kiritchenko

I remember Liosha as a schoolboy. In the ninth grade it was already

obvious that he was a mathematician. For three years, twice a week, he

would submit to me his exercises in calculus. In Liosha’s class the school-

boys were assigned to university students (that is, you could submit your

exercises only to “your own” student), and I was assigned to Liosha as his

supervising student.

Already at that time, Liosha was distinguished by his fundamental

approach. He never tried to solve a problem in the shortest and easiest

way to get rid of it as soon as possible and to get a good grade. On the

contrary, in each exercise he saw the possibility of investigating a more

general matter. For example, submitting a traditional exercise on the

length of a circle, he started by examining the general definition of the

length of a rectifiable curve. Liosha always began by writing down his an-

swers in a notebook, and with his approach he needed quite a number of

notebooks. Often before submitting another bone-rattling solution from

another notebook Liosha said: “For greater certainty let us also prove this

lemma”. He was not afraid of any difficulties.

Some years later, Liosha became the youngest employee of the Fac-

ulty of Mathematics of HSE. We were colleagues both at the IPPI and at

HSE. But when I think about Liosha, first there appears in my memory

his image of nearly  years back, the image of the ninth-year schoolboy-

mathematician who is not afraid of the arduous paths.
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 июня  года исполнилось бы  лет Алексею Зыкину –– за-

мечательному математику и преподавателю, нашему дорогому дру-

гу и коллеге.

Алеша родился в  году в Москве. Его родители не были мате-

матиками: отец, Иван Семенович –– доктор юридических наук, про-

фессор, один из ведущих специалистов в России в области междуна-

родного частного права, гражданского, торгового права, арбитража;

мать, Юлия Ивановна –– экономист в области внешней торговли.

В  лет Алеша поступил в математический класс в знаменитой

московской школе № . Этот класс учили Рафаил Калманович Гор-

дин и Петр Валентинович Сергеев, а уроки «матанализа» (так в -й

называется углубленный курс математики) помогали вести, в част-

ности, Александр Кузнецов и Валентина Кириченко, оба –– высоко-

классные математики-исследователи. Именно тогда, еще в школе,

Алеша заинтересовался теорией чисел и, в частности, проштудиро-

вал классический учебник Айерленда и Роузена.

В  году, еще одиннадцатиклассником, Алеша поступил в

Независимый московский университет, а в -м, окончив школу ––

на мехмат МГУ, как и большинство его одноклассников. Примерно

тогда же, на первом курсе, он начал заниматься научной работой

под руководством Михаила Анатольевича Цфасмана. Его первая

статья, «Теоремы Брауэра––Зигеля и Цфасмана––Влэдуца для почти

нормальных расширений глобальных полей», была опубликована,

когда он был еще на четвертом курсе. В течение всех дальнейших

лет учебы в университете и в аспирантуре основным Алешиным

руководителем продолжал быть М. А. Цфасман, существеннейшим

образом повлиявший как на содержание математических исследо-

ваний Алеши, так и на сам их стиль.

Блестяще окончив Независимый университет в  году и мех-

мат в -м и поступив в аспирантуру в Математический инсти-

тут им. В. А. Стеклова РАН, Алеша получил стипендию правитель-

ства Французской республики, благодаря которой он мог проводить

шесть месяцев в году во Франции. Там он учился в аспирантуре Уни-

верситета Экс-Марсель II в Люмини (пригород Марселя); его соруко-
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водителем с французской стороны был Сергей Георгиевич Влэдуц.

В июне  года он защитил кандидатскую диссертацию во Фран-

ции, а затем в октябре  года –– в России.

В наши дни случаи, чтобы молодой математик после защиты

диссертации сразу нашел бы постоянную академическую работу,

достаточно редки, обычно этому предшествуют несколько лет по-

стдока. Однако Алеше это удалось: в  году он получил позицию

доцента на появившемся незадолго до того факультете математи-

ки Высшей школы экономики. Несколько лет он оставался самым

молодым сотрудником этого факультета –– и одним из самых актив-

ных: он читал обязательные и специальные курсы в Вышке и в Неза-

висимом университете, организовывал многочисленные семинары

и руководил первыми научными работами студентов, причем не

обязательно по теории чисел. Так, например, один из студентов мат-

фака, Дмитрий Грищенко, написал под Алешиным руководством

работу о математике оригами, которая впоследствии была опубли-

кована в сборнике «Математическое просвещение». В / гг. по

результатам студенческого голосования Алеше ежегодно присужда-

лось звание лучшего преподавателя ВШЭ.

Алеша был талантливым организатором. Среди наиболее важ-

ных Алешиных достижений можно назвать организацию летней

школы «Алгебра и геометрия» в Ярославле, которая впервые прошла

в  году и с тех пор проходит ежегодно. Эта школа рассчитана на

студентов –– курсов и аспирантов; тем самым она является идей-

ным продолжением знаменитой летней школы для младшекурсни-

ков «Современная математика» в Дубне, проходящей с  года

(и в работе которой Алеша, кстати, тоже неоднократно участвовал:

сначала как слушатель, потом как преподаватель). Также в течение

/ гг. Алеша был заведующим Лабораторией алгебраической

геометрии и ее приложений в Высшей школе экономики.

В  году –– в неполные  лет, опять-таки исключительный

случай! –– Алеша получил постоянную профессорскую позицию во

Франции. Вернее, в самом дальнем ее уголке, в Университете Фран-

цузской Полинезии, на острове Таити. Однако, даже находясь на

другом конце земного шара, он продолжал принимать самое ак-

тивное участие в московской математической жизни: поддержи-

вал контакты с московскими коллегами, руководил студентами и

неизменно приезжал на ярославскую школу. Незадолго до гибели

он возглавил исследовательскую группу (аналог кафедры) по ал-
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гебраической геометрии и ее приложениям к теории информации

в своем университете.

Однако математикой Алешины интересы далеко не ограничи-

вались: он был разносторонне образованным и эрудированным че-

ловеком, хорошо знал литературу, свободно владел английским и

французским языками, любил путешествовать –– кажется, он объ-

ездил почти весь мир, от Гималаев до Килиманджаро, –– увлекался

спортом, в частности, скалолазанием и дайвингом...

 апреля  года Алеша Зыкин, его жена Таня Макарова и

инструктор по дайвингу Жиль Дэме трагически погибли при погру-

жении в подводную пещеру на атолле Аэ на островах Туамоту, во

Французской Полинезии.

Алеша оставил обширное научное наследие, успев написать 

опубликованных работ (две из которых вышли уже посмертно). За

свои результаты он был удостоен ряда престижных наград: премии

Московского математического общества (), премии фонда «Ди-

настия» () и других. Его работы относятся в основном к асимп-

тотической теории глобальных полей и арифметических многооб-

разий. Этот активно развивающийся раздел современной матема-

тики находится на стыке аналитической теории чисел, алгебраиче-

ской теории чисел и алгебраической геометрии. Его основы были

заложены в работах М. А. Цфасмана и С. Г. Влэдуца.

Опишем в целом суть вопросов в данной области. Важнейшими

объектами математических исследований являются системы поли-

номиальных уравнений с целыми коэффициентами или, обобщая,

арифметические многообразия. Отметим, что одномерный случай ––

это глобальные поля. С каждым арифметическим многообразием

связана некоторая комплексно-аналитическая функция от одной

переменной, называемая его дзета-функцией. Существует глубокая

связь между аналитическими свойствами дзета-функции и свой-

ствами исходного арифметического многообразия. Каждое новое

утверждение, подтверждающее эту связь, представляет собой значи-

тельный интерес. Если рассматривать бесконечное семейство гло-

бальных полей или арифметических многообразий, то оказывается,

что в широком ряде случаев пределы их дзета-функций обладают

многими замечательными свойствами, что имеет важные следствия,

касающиеся самих арифметических многообразиях в семействе. При

этом важным условием на семейство является его асимптотическая



 Алексей Иванович Зыкин (––)

точность, что, впрочем, не является сильным ограничением, посколь-

ку любое бесконечное семейство содержит асимптотически точное

подсемейство. Именно эти вопросы и изучаются в асимптотической

теории глобальных полей и, более обще, в асимптотической теории

арифметических многообразий. Дополнительный интерес данных ис-

следований заключается в многочисленных приложениях возникаю-

щих конструкций к теории кодирования и криптографии. Зыкин внес

фундаментальный вклад в развитие этих областей.

Все статьи Зыкина написаны прекрасным языком, отличаются

кристальной четкостью и ясностью изложения. Ключевые моменты

рассуждений подробно объяснены. Во многих статьях в конце при-

веден список дальнейших открытых вопросов. Помимо своей вы-

сокой научной ценности, статьи Зыкина являются замечательным

введением в асимптотическую теорию глобальных полей и арифме-

тических многообразий для широкого круга математиков.

Опишем статьи Зыкина чуть подробнее.

В работе [] доказано усиление классической теоремы Брауэра––

Зигеля. Более точно, для башни числовых полей {Ki} рассматрива-

ется предел отношения log(hKi
RKi

)/gKi
, где gKi

= log
Æ
|DKi
|, а hKi

, RKi

и DKi
обозначают число классов, регулятор и дискриминант поля Ki,

соответственно. Классическая теорема Брауэра––Зигеля утвержда-

ет, что если поля Ki нормальны над Q или выполняется обобщенная

гипотеза Римана (ОГР), то при некоторых ограничениях данный

предел равен 1. В статье Зыкина получен, при тех же ограничениях

(в терминологии Цфасмана––Влэдуца, так называемый асимптоти-

чески плохой случай) аналогичный результат для почти нормаль-

ных полей (теорема ). Там же замечено, что результаты Цфасмана––

Влэдуца, обобщающие теорему Брауэра––Зигеля, дают аналогичное

утверждение и для асимптотически хороших башен. Кроме того, в

предположении ОГР построены новые примеры башен с предель-

ным отношением Брауэра––Зигеля более близким к оценке снизу,

чем известные ранее (теорема ).

В статье [] содержится обзор результатов Цфасмана, Влэдуца,

Зыкина и Лебака о семействах глобальных полей, обзор результатов

Кунявского––Цфасмана и Андри––Пачеко о семействах эллиптиче-

ских кривых над функциональными и числовыми полями, соответ-

ственно. Кроме того, для асимптотически точного семейства много-

образий {Xi} размерности d над конечным полем доказана теорема
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о предельном поведении вычетов в точке s=d дзета-функций ζXi
(s)

(теорема .).

Далее, в работе [] рассматривается эллиптическая кривая E

над функциональным полем K, башня расширений {Ki} поля K, и

изучается предельное поведение L-функций LEi
(s) эллиптических

кривых Ei = E ×K Ki над Ki. Сформулировано утверждение о пре-

дельном поведении ведущих коэффициентов при разложении функ-

ций LEi
(s) в ряд Тэйлора в точке s = 1 (теорема , п. ). Помимо

рассмотрения предельного поведения вычетов и ведущих коэффи-

циентов дзета- и L-функций, естественно также рассмотреть пре-

дельное поведение самих данных функций, как функций комплекс-

ного переменного, определенных на подходящей области. Зыкин

формулирует в [] утверждение о предельном поведении функций

log LEi
(s) в области Re s>1 (теорема , п. ). Полные доказательства

обоих утверждений приведены в работе [].

В заметке [] кратко сформулированы результаты, подробное

изложение которых содержится в статье []. Основные результаты

статьи [] заключаются в следующем. Для асимпототически точных

семейств числовых полей {Ki} исследуется предельное поведение

логарифмов дзета-функций logζKi
(s). При этом во всех результа-

тах предполгается выполненой ОГР. Доказывается, что в области

Re s > 1/2 предел функций log((s−1)ζKi
(s))/gKi

равен логарифму

предельной дзета-функции logζ{Ki}
(s) семейства {Ki}, введенной

ранее Влэдуцом и Цфасманом (теорема ). Это дает концептуальное

объяснение обобщенной теоремы Брауэра––Зигеля, а также в каче-

стве приложение дает результат о предельном поведении констант

Эйлера––Кронекера, являющийся аналогом для числовых полей ре-

зультата Ихары в функциональном случае (следствие ). Кроме того,

дается нетривиальная верхняя оценка на предел логарифма веду-

щих коэффициентов при разложении функций ζKi
(s) в точке s=1/2

(теорема ). Доказательства используют оценки на логарифмиче-

ские производные дзета-функций в критической полосе, а также

результаты о предельном распределении нулей дзета-функций на

критической прямой в семействах числовых полей.

В короткой статье [] анонсированы результаты из работы []. В

работе [], совместной с Ж. Лашо и К. Ритценталером, получен ответ

на важный вопрос великого математика Ж.-П. Серра, как определить,

является ли главнополяризованное абелево трехмерное многообра-

зие (A, a) над произвольным полем k⊂C якобианом кривой над k.
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С этой целью рассматривается некоторый арифметический инва-

риант χ18(A, a,ω)∈ k, где ω –– базис в пространстве регулярных 1-

форм на A. Этот инвариант выражается через аналитическую моду-

лярную форму Зигеля eχ18 и позволяет различать абелевы трехмер-

ные многообразия, изоморфные над квадратичным расширением

основного поля. В сочетании с одним результатом Серра это дает

ответ на исходный вопрос (теорема ..). Существенным образом,

он сводится к тому, что (A, a) является якобианом негиперэлипти-

ческой кривой тогда и только тогда χ18(A, a,ω) является ненуле-

вым квадратом в k. Кроме того, в статье дается новое, простое и

красивое доказательство классической формулы Клейна, тесно свя-

занной с приведенным выше вопросом и заключающейся в равен-

стве Disc(F)2
= χ18(A, a,ω), для гладкого однородного многочлена

F(x1, x2, x3) степени 4 и якобиана A соответствующей плоской квар-

тики с естественными поляризацией a и базисом ω из 1-форм (тео-

рема ..).

В заметке [] кратко приведены результаты из работы []. В ра-

боте [], совместной с Ф. Лебаком, детально исследуется предельное

поведение логарифмических производных ZK (s)=ζ′
K

(s)/ζK (s) дзе-

та-функций ζK (s) глобальных полей K. При этом во всех результа-

тах, относящихся к числовым полям, предполагается выполненной

ОГР. Заметим, что поскольку дзета-функция ζK (s) задается беско-

нечным произведением, функция ZK (s) задается бесконечным рядом.

Сначала в статье [] доказывается тонкая явная оценка на остаточ-

ный член в выражении как бесконечного ряда функции ZK (s) в об-

ласти Re s>1/2 (теоремы . и .). При доказательстве этого ре-

зультата авторами продемонстрировано невероятно виртуозное вла-

дение сложнейшей аналитической техникой и явными формулами

Вейля. В частности, данная оценка приводят к новому доказатель-

ству основных неравенств в асимптотической теории глобальных по-

лей (замечания . и .). Затем полученная оценка применяется

к логарифмической производной Z{Ki}
(s) предельной дзета-функции

ζ{Ki }
(s) асимптотически точного семейства глобальных полей {Ki}. А

именно, получается явная оценка на остаточный член в выражении

как бесконечного ряда функции Z{Ki}
(s) в области Re s> 1/2 (след-

ствие .). Кроме того, авторами найдена явная оценка на остаточ-

ный член в выражении как бесконечного ряда значения Z{Ki}
(1/2)

(теорема .). Наконец, из этого выведена явная оценка на остаточ-

ный член в выражении как бесконечного ряда значения logζ{Ki}
(1)
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(следствие .). Последняя оценка является значительным усилени-

ем классической теоремы Брауэра––Зигеля.

Совместная с Лебаком статья [] является обзором асимпто-

тической теории и является прекрасным введением в нее. Сначала

в статье излагаются основы данной теории, заложенные Цфасма-

ном и Влэдуцем: предельные инварианты, понятие асимптотиче-

ски точного семейства, основное неравенство, являющееся далеким

обобщением одновременно оценок Одлыжко––Серра и неравенства

Дринфельда––Влэдуца (параграф ). Затем обсуждаются обобщения

теоремы Брауэра- Зигеля, принадлежащие Цфасману, Влэдуцу и авто-

рам статьи, предельное поведение дзета-функций и их нулей, а также

удивительные связи этих тем с предельной дзета-функцией (пара-

граф ). Далее приводятся примеры башен функциональных полей,

являющихся асимптотически оптимальными, т.е. достигающих оцен-

ку из основного неравенства (параграф ). Такие башни соответству-

ют итерированным накрытиям кривых над конечным полем, имею-

щим в пределе наибольшее возможное число точек. В обзоре описан

широкий ряд примеров асимптотически оптимальных башен, постро-

енных Ихарой, Цфасманом, Влэдуцом, Цинком, Элкисом, Гарсией

и Штихтенотом. Кроме того, обсуждается многомерное обобщение

асимптотической теории глобальных полей (параграф ). А именно,

формулируются результаты Лашо––Цфасмана, обобщающие основ-

ное неравенство на случай асимптотически точных семейств мно-

гообразий над конечным полем. Также приводятся гипотетические

обобщения теоремы Брауэра––Зигеля на случай семейств абелевых

многообразий над функциональным полем, принадлежащие Куняв-

скому––Цфасману и Андри––Пачеко. Наконец, кратко объясняется

формализм абстрактных L-функций над конечным полем, подробно

изложенный в следующей статье.

В статье [] заложены фундаментальные основы общей асимп-

тотической теории многообразий над конечными и над функци-

ональными полями. Основные утверждения из асимптотической

теории функциональных полей обобщаются на случай бесконеч-

ных семейств абстрактных дзета- и L-функций над конечным по-

лем. С этой целью Зыкин тщательно анализирует, какие именно

общие арифметические свойства дзета-функций кривых приводят

к данным основным утверждениям. Оказывается, что, по большо-

му счету, достаточно потребовать аналог утверждения о модулях

собственных значений Фробениуса, а также аналог неотрицатель-
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ности числа точек или его ослабление, заключающееся в асимпто-

тической очень точности семейств (определение .). Развивая яв-

ные формулы в таком абстрактном контексте (параграф .), автор

выводит из них множество нетривиальных результатов. Отметим

теорему о предельном распределение нулей (теорема .), вари-

ант обобщенной теоремы Брауэра––Зигеля о предельном поведении

дзета-функций (теоремы . и .) и вариант основного неравенства

(теоремы . и .). В качестве приложения получено утверждение о

предельном поведении высших постоянных Эйлера––Кронекера для

семейств функциональных полей, усиливающее известные ранее

результаты Ихары (следствие .), а также найдено новое доказа-

тельство основного неравенства (замечание .). Кроме того, все

общие результаты прекрасно проиллюстрированы приложениями к

семействам эллиптических кривых над функциональными полями

(следствие ., теорема .).

В короткой и элегантной статье [] исследуются семейства при-

митивных параболических форм fi уровня Ni и веса ki, для которых

число Nik
2
i

стремится к бесконечности. Для каждой формы fi рас-

сматривается ее L-функция L fi
(s), аргумент которой по сравнению

со стандартным подходом сдвинут на (k−1)/2 так, чтобы функцио-

нальное уравнение связывало функции L fi
(s) и L fi

(1− s). В предпо-

ложении ОГР для L-функций L fi
(s) доказывается, что в пределе их

нули распределены равномерно на критической прямой (теорема

.). Этот красивый результат получается с помощью явных формул

и других аналитических методов.

В работе [], совместной с Лебаком, для произвольной кривой

X над конечным полем Fq приводятся нижняя и верхняя оценки

на число классов h кривой X , т.е. на число точек на якобиане кри-

вой X над Fq: hmin(N)¶ h¶ hmax(N) (следствие .). При этом чис-

ла hmin(N) и hmax(N) зависят от натурального параметра N , кото-

рый можно выбирать произвольным образом, и выражаются явно

в терминах чисел точек кривой X над полями Fq f , где 1¶ f ¶ N .

Для доказательства оценок используется явная формула для дзета-

функций кривых, предложенная Серром, в которой авторами вы-

бирается подходящая тестовая функция, а также находятся тонкие

оценки на члены, входящие в явную формулу. В статье показано, что

для асимптотически точных семейств кривых {Xi} последовательно-

сти log hmin(N , Xi)/gi, log h(Xi)/gi и log hmax(N , Xi)/gi имеют одина-

ковые пределы при N , i→∞ (замечание .). Более того, приведен
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ряд примеров кривых, возникающих из различных асимптотически

оптимальных башен, для которых приведенная в статье нижняя

оценка hmin(N) при подходящем N оказывается существенно силь-

нее некоторых известных ранее нижних оценок на число классов,

найденных другими исследователями (параграф ).

В статье [], также написаной совместно с Лебаком, рассматри-

ваются примитивные параболические формы f , характеры Дирихле

χ и изучается распределение значений функции L ( f ⊗χ, s), обо-

значающей логарифм или логарифмическую производную L-функ-

ции L( f ⊗χ, s). Более точно, для функции комплексного переменного

Φ(w) из достаточно широкого класса рассматривается среднее значе-

ние
1
m

∑
χ

Φ(L ( f ⊗χ, s)) при фиксированном s, где χ пробегает все

характеры Дирихле с простым кондуктором m. В предположении ОГР

для L( f ⊗χ, s) доказывается, что при m→∞ данное среднее значе-

ние стремится к
Í

C

Φσ(w)Mσ(w)|dw|, где функция Mσ(w) определе-

на явным образом по форме f и по вещественному числу σ=Re s

(теорема .). Можно сказать, что Mσ(w) является предельным рас-

пределением значений функции χ 7→L ( f ⊗χ, s). Кроме того, также

в предположении ОГР для L( f ⊗ χ, s), в статье для произвольного

квази-характера ψ: C→ C∗ доказываются утверждения о пределе

средних значений Avgχψ(L ( f ⊗ χ, s)) и Avgh
f
ψ(L ( f ⊗ χ, s)), где

средние значения берутся по χ и f , а предел берется по простому

кондуктору m характера χ и по простому уровню N формы f , со-

ответственно (теоремы . и .). При этом среднее значение по f

берется с некоторыми специальными гармоническими весами.

В работе [], совместной с С. Балле, при помощи известных ре-

зультатов об интервалах между простыми числами, строятся асимп-

тотически оптимальные семейства модулярных кривых над конеч-

ным полем, которые позволяют найти новые оценки сверху на сим-

метрический тензорный ранг умножения в некоторых конечных по-

лях (предложения  и ). Данные оценки оказываются в ряде слу-

чаев лучше известных ранее оценок.

Мы надеемся, что данный сборник статей будет весьма полез-

ным для математиков из различных областей, а также поможет про-

длить память о дорогом Алеше.

С. О. Горчинский, Е. Ю. Смирнов, М. А. Цфасман
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cations” in: Mathematical Publications of Besançon, Algebra and Number

Theory, Presses Univ. Franche-Comté, Besançon, , ––.
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математики ВШЭ

А. Ю. Пирковский

Я помню Лешу студентом Независимого университета. В ––

 годах он слушал там мои лекции по функциональному анализу

и спектральной теории, и общаться с ним на математические те-

мы было настоящим удовольствием. Поражало то, насколько глу-

боко ему удавалось разобраться в вещах, которые, в общем-то, не

относились напрямую к его алгебраической специализации. Даже

на общем ярком фоне студентов Независимого Леша выделялся еще

ярче. А несколько лет назад, уже на матфаке Вышки, я неоднократно

оказывался невольным слушателем Лешиных лекций по теории чи-

сел (открытая дверь его аудитории находилась в точности напротив

открытой двери моего офиса). Я слушал и завидовал белой зави-

стью –– лекции были просто великолепны, как с точки зрения чет-

кости и последовательности изложения, так и с точки зрения ора-

торского искусства. Мало кто так умеет.

Мы потеряли талантливого математика, выдающегося препода-

вателя и просто очень хорошего человека. Не выходят из головы

строки из песни Юрия Визбора: «Лучшие ребята из ребят раньше

всех уходят, это странно...»

И. А. Чельцов

Я узнал о Леше Зыкине давно как о молодом и очень талантливом

математике в Вышке. А познакомился с ним только когда он стал

руководить лабораторией Алгебраической Геометрии. И с первой

встречи стало понятно что Леша очень светлый и хороший чело-

век. При этом он как-то легко все делал: занимался математикой,

организовывал летние школы в Ярославле, руководил лабораторией,

преподавал, путешествовал. И у него все получалось. Когда Леша

получил позицию на Таити, я был безумно рад за него. Заниматься

математикой и руководить научной лабораторией в месте с идеаль-

ным климатом и европейской цивилизацией. О таком можно только

мечтать. Конечно было грустно, что он уезжает. Но потом оказалось,

что Леша сохранил связь с Москвой и продолжал активно участво-
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вать в Московской математической жизни. В общем все сложилось

очень хорошо. Молодой, талантливый, активный, спортивный, жена

красавица, живет на Таити и в Москве.  года. Вся жизнь впереди.

Новость о его смерти шокировала. Очень трудно это принять.

В. А. Тиморин

Невосполнимая утрата для математики и для всех нас. Леша был

талантливым ученым, его достижения получили высокое международ-

ное признание, но это было только начало. Яркая звезда погасла, хотя

могла бы еще многое осветить в науке. Скорбим и соболезнуем род-

ственникам и друзьям Алексея и Татьяны. Мы будем помнить о них.

И. Маршалл

How awful! This is terribly sad news indeed, and a major loss for our

Moscow community.

Ф. А. Богомолов

Произошла страшная трагедия. Погиб Леша Зыкин.

Это огромная потеря для всех, кто его знал и работал вместе

с ним. Я знал его еще студентом, с тех пор как он приехал летом

на школу в Геттинген. Больно писать о нем в прошедшем времени,

о молодом, полном сил и энергии человеке, который уже многого

достиг и перед которым открывались еще большие перспективы.

С его талантом ученого и организатора перед ним были открыты

многие пути. Последние годы я много с ним работал по делам Лабо-

ратории и хочу отметить, что несмотря на молодость и отсутствие

опыта он проявил себя прекрасным организатором и руководите-

лем. Будучи по природе мягким и тактичным он умел быть четким

и настойчивым. Леша был абсолютно надежным и на него всегда

можно было положиться в решении серьезных вопросов. Даже по-

сле своего отъезда на Таити он продолжал активно участвовать в

работе Лаборатории и, в частности, взял на себя самую трудную

часть работы по организации ежегодной Ярославской школы.

Он был талантлив в разных областях, много знал и интересовал-

ся многими вещами далекими от математики. Поэтому было всегда

интересно с ним разговаривать. Леша был замечательным челове-

ком. Память о нем и горечь от этой утраты навсегда останется в

моем сердце.
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В. С. Жгун

Трудно поверить в столь неожиданную и горькую потерю наше-

го дорогого друга Леши Зыкина. Он был замечательный математик,

отличный лектор и очень ответственный педагог, готовый всегда

прийти на помощь своим студентам. А еще я помню его как очень

активного туриста. Находясь в почти любой стране, он всегда знал,

куда можно поехать, что посмотреть. Он был знатоком изысканной

кухни и хорошего вина, а в его копилке путешественника множе-

ство интересных и необычных мест, о которых он с удовольствием

и красочно рассказывал...

Пусть земля тебе будет пухом, дорогой Леша!

П. Соломатин

До сих пор не могу поверить. Алексей Иванович был не просто

моим главным учителем. Он был мне настоящим другом, одним из

тех на кого хотелось равняться и у кого всегда можно было спро-

сить совета в трудную минуту. Почему я не бросил учебу на матфа-

ке в моменты отчаяния? Почему занялся теорией чисел? Почему L-

функции? Почему кривые над конечными полями? Ответ простой ––

благодаря Леше. Мы работали вместе с ним начиная с его первых

дней на факультете в  году и продолжали работать даже после

того как оба уехали из Москвы. Буквально недавно я спросил не

хочет ли он быть одним из моих научных оппонентов на защите

диссертации и он естественно согласился. И вот на днях я собирался

написать ему очередное письмо, хотел спросить совета как двигать-

ся по жизни дальше, но как оказалось, не успел. Я всегда думал, что

успею…успею написать с ним не одну статью, успею посидеть где-

нибудь в горах во Франции с бутылкой хорошего вина, успею пока-

зать, что те усилия которые он в нас вкладывал были не напрасны.

Но не успел. И от этого как-то вдвойне больно.

С. О. Горчинский

Думаю, у всех нас эта трагическая новость никак не помещается

в голове.

Я знал Лешу много лет, начиная с его первого курса универси-

тета, мы многому учились с ним вместе, ходили на одни семинары.

Это был ярчайший человек.

Наверное, в Москве больше почти нет людей, которые также как

Леша прекрасно понимают алгебраическую и арифметическую гео-
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метрию, в то же время свободно владеют продвинутыми методами

аналитической теории чисел, и ясно понимают приложения к коди-

рованию и криптографии. Это удивительное сочетание проходило

через все математическое творчество Леши. Из его ранних резуль-

татов мне хочется вспомнить существенное усиление классической

теоремы Брауэра––Зигеля о поведении регулятора и дискриминанта

для широкого ряда последовательностей числовых полей. Вместе

с Ф. Лебаком им была получена новая тонкая оценка на логариф-

мическую производную дзета-функций глобальных полей, которая

была ими применена для далекого обобщения явной формулы в

самой теореме Брауэра––Зигеля. Леша интенсивно развивал теорию

асимптотических дзета-функций, расширяя ее на случай семейств

модулярных форм. Он заложил фундаментальные основы общей

асимптотической теории дзета-функций многообразий над конеч-

ными полями. Совместно с соавторами, Леша ответил на важный

вопрос великого математика Ж.-П. Серра о том, как определить, яв-

ляется ли якобианом кривой главнополяризованное абелево трех-

мерное многообразие над не алгебраически замкнутым полем нуле-

вой характеристики. Серр был высокого мнения об этом результате.

Леша был очень хорошим надежным товарищем. К нему всегда

можно было обратиться за помощью. Удивительно, как одинаково

внимательно и терпеливо он относился ко всем окружающим его

людям.

Он очень чутко ощущал жизнь, был высоким ценителем пре-

красного в ней. Его тонкий вкус проявлялся далеко за пределами

математики, в искусстве, общении с людьми, языках, увлечениях.

Леша был на редкость широко образованным человеком, например,

хочется вспомнить его глубокое знание литературы, особенно фран-

цузской. Леша был фантастическим организатором, невероятно со-

четая мягкость и тактичность в общении с людьми со способностью

доводить все дела до конца в совершенном виде.

Пусть память о Леше будет вечной. Давайте чаще его вспоми-

нать, так мы можем помочь ему теперь.

А. Н. Рудаков

Как ужасно! Алеша Зыкин, молодой, энергичный и веселый ––

таким он был всегда в коридорах и комнатах нашего здания на Ва-

вилова так недавно –– и его уже нет на этой Земле. Глубоко скорблю

и соболезную родным и близким, друзьям и коллегам!
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С. А. Локтев

Алексей за  года прожил яркую и интересную жизнь. Мне по-

счастливилось хорошо узнать его и как коллегу (мы вместе учили

математическому анализу студентов матфака выпуска  года), и

как друга (мы вместе занимались скалолазанием, вместе ездили на

Воргол и в Эль-Чорро).

Я хотел бы отметить два его качества, каким он запомнился. Во-

первых, это –– элегантность, которая бросалась в глаза с первых ми-

нут общения с ним. Он был потрясающе тактичен, и в то же время

искренен, открыт ко всему новому и необычному, ценил жизнь во

всех ее проявлениях.

Во-вторых, и это хорошо знали его друзья, он был по-настояще-

му бесстрашен. Не в том смысле, что не испытывал страх, а в том,

что страх никогда не обуславливал его мысли и действия.

Наша переписка оборвалась на том, что «сезон дождей заканчи-

вается –– жизнь становится еще лучше». Я не успел ему ответить…

Пусть светлая память о Леше пребывает в наших сердцах!

А. Г. Сергеев

Я ошеломлен новостью о гибели Алексея Зыкина и его жены во

время дайвинга.

Мне довелось принять, хотя и формальное участие в его судь-

бе, будучи его руководителем в аспирантуре. Это был приятный и

безусловно очень способный математик.

Очень жаль терять таких молодых людей, когда и так мы посто-

янно ощущаем их нехватку.

Присоединяюсь к соболезнованиям родителям Алексея и его же-

ны.

В. А. Кириченко

Я помню Лешу школьником. В девятом классе уже было очевид-

но, что он математик. На протяжении трех лет два раза в неделю

Леша сдавал мне задачи из листков по «матанализуњ. В Лешином

классе школьников прикрепляли к студентам (то есть, сдавать зада-

чи можно было только «своему» студенту), а меня как раз назначили

студентом для Леши.

Уже тогда Лешу отличал фундаментальный подход. Он никогда

не стремился решить задачу самым дешевым и коротким спосо-

бом, лишь бы скорей сдать и получить плюсик. Наоборот, в каж-
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дой задаче он видел возможность детально разобраться в более об-

щем вопросе. Например, сдавая традиционную для листков задачу

о длине окружности, Леша сначала разобрал общее определение

длины спрямляемой кривой. Свои решения Леша всегда сначала

записывал в тетрадь, и тетрадей при его подходе требовалось до-

вольно много. Часто перед тем как рассказать очередное зубодро-

бительное утверждение из очередной тетради Леша говорил «Для

пущей ясности докажем еще такую лемму». Его не пугали никакие

сложности.

Прошли годы, Леша из школьника стал самым молодым сотруд-

ником матфака Вышки. Мы с ним были коллегами в ИППИ и в Выш-

ке. Однако когда я думаю о Леше, в моей памяти в первую очередь

возникает его образ почти -летней давности, образ девятикласс-

ника-математика, который не боится идти трудным путем.



The Brauer––Siegel and Tsfasman––Vlăduţ

theorems for almost normal extensions

of number fields

To my teacher M. A. Tsfasman

on the occasion of his th birthday

Abstract. The classical Brauer––Siegel theorem states that if k runs

through the sequence of normal extensions of Q such that
nk

log |Dk|
→0,

then
log hk Rk

log
p
|Dk|
→ 1. First, in this paper we obtain the generalization

of the Brauer––Siegel and Tsfasman––Vlăduţ theorems to the case of

almost normal number fields. Second, using the approach of Hajir and

Maire, we construct several new examples concerning the Brauer––

Siegel ratio in asymptotically good towers of number fields. These ex-

amples give smaller values of the Brauer––Siegel ratio than those given

by Tsfasman and Vlăduţ.

1. Introduction

Let K be an algebraic number field of degree nK = [K :Q] and dis-

criminant DK . We define the genus of K as gK = log
p

DK . By hK we de-

note the class-number of K, RK denotes its regulator. We call a sequence

{Ki} of number fields a family if Ki is non-isomorphic to K j for i 6= j. A

family is called a tower if also Ki⊂Ki+1 for any i. For a family of number

fields we consider the limit

BS(K ) := lim
i→∞

log hKi
RKi

gKi

.

The classical Brauer––Siegel theorem, proved by Brauer (see []), states

that for a familyK ={Ki} we have BS(K )=1 if the family satisfies two

conditions:

(i) lim
i→∞

nKi

gKi

=0;

(ii) either the generalized Riemann hypothesis (GRH) holds, or all the

fields Ki are normal over Q.

Alexei Zykin, The Brauer––Siegel and Tsfasman––Vlădu̧t theorems for almost normal

extensions of number fields, Moscow Mathematical Journal,  (), no. , ––.
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We call a number field almost normal if there exists a finite tower

of number fields Q= K0⊂ K1⊂…⊂ Km= K such that all the extensions

Ki/Ki−1 are normal. Weakening the condition (ii), we prove the follow-

ing generalization of the classical Brauer––Siegel theorem to the case of

almost normal number fields:

Theorem . LetK ={Ki} be a family of almost normal number fields

for which nKi
/gKi
→0 as i→∞. Then we have BS(K )=1.

It was shown by M. A. Tsfasman and S. G. Vlădu̧t that, taking in ac-

count non-archimedian places, one may generalize the Brauer––Siegel

theorem to the case of extensions where the condition (i) does not hold.

For a prime power q we set

Nq(Ki) := |{v ∈ P(Ki): Norm(v) = q}|,
where P(Ki) is the set of non-archimedian places of Ki. We also put

NR(Ki)= r1(Ki) and NC(Ki)= r2(Ki), where r1 and r2 stand for the num-

ber of real and (pairs of) complex embeddings.

We consider the set A={R,C; 2, 3, 4, 5, 7, 8, 9, …} of all prime pow-

ers plus two auxiliary symbols R and C as the set of indices. A family

K = {Ki} is called asymptotically exact if and only if for any α∈ A the

following limit exists:

φα = φα(K ) := lim
i→∞

Nα(Ki)

gKi

.

We call an asymptotically exact family K asymptotically good (respec-

tively, bad) if there exists α ∈ A with φα > 0 (respectively, φα = 0 for

any α ∈ A). The condition on a family to be asymptotically bad is, in

the number field case, obviously equivalent to the condition (i) in the

classical Brauer––Siegel theorem. For an asymptotically good tower of

number fields the following generalization of the Brauer––Siegel theorem

was proved in []:

Theorem  (Tsfasman––Vlădu̧t Theorem, see [, Theorem .]).

Assume that for an asymptotically good towerK fields any of the following

conditions is satisfied:

• GRH holds;

• all the fields Ki are almost normal over Q.

Then the limit BS(K )= lim
i→∞

log hKi
RKi

gKi

exists and we have:

BS(K ) = 1+
∑
q

φq log
q

q−1
−φR log 2−φC log 2π, ()

the sum beeing taken over all prime powers q.
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For an asymptotically bad tower of number fields we have φR = 0

and φC= 0 as well as φq = 0 for all prime powers q, so the right hand

side of the formula () equals to one. We also notice that the condition

on a family to be asymptotically bad is equivalent to lim
i→∞

nKi

gKi

= 0. So,

combining our Theorem  with Theorem  we get the following corollary:

Corollary . For any towerK ={Ki}, K1⊂K2⊂… of almost normal

number fields the limit BS(K ) exists and we have:

BS(K ) = lim
i→∞

log(hi Ri)

gi
= 1+

∑
q

φq log
q

q−1
−φR log 2−φC log 2π,

the sum beeing taken over all prime powers q.

In [] bounds on the ratio BS(K ) were given, together with ex-

amples showing that the value of BS(K ) may be different from 1. We

corrected some of these erroneous bounds and managed to precise a few

of the estimates in the examples. Also, using the infinite tamely ramified

towers, found by Hajir and Maire (see []), we get (under GRH) new

examples, both totaly complex and totally real, with the values of BS(K )

smaller than those of totally real and totally complex examples of [].

The result is as follows:

Theorem . . Let k=Q(ξ), where ξ is a root of

f (x) = x6
+ x4−4x3−7x2− x+1,

K = k(
Æ
ξ5−467ξ4+994ξ3−3360ξ2−2314ξ+961).

Then K is totally complex and has an infinite tamely ramified 2-tower K ,

for which, under GRH, we have:

BSlower ¶ BS(K ) ¶ BSupper,

where BSlower≈0.56498…, BSupper≈0.59748….

. Let k=Q(ξ), where ξ is a root of

f (x) = x6− x5−10x4
+4x3

+29x2
+3x−13,

K = k(
Æ
−2993ξ5+7230ξ4+18937ξ3−38788ξ2−32096ξ+44590).

Then K is totally real and has an infinite tamely ramified 2-tower K , for

which, under GRH, we have:

BSlower ¶ BS(K ) ¶ BSupper,

where BSlower≈0.79144…, BSupper≈0.81209….
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However, unconditionally (without GRH), the estimates for totally

complex fields that may be obtained using the methods developed by

Tsfasman and Vlădu̧t lead to slightly worse results, than those already

known from []. This is due to a rather large number of prime ideals

of small norm in the field K. For the same reasons the upper bounds for

the Brauer––Siegel ratio for other fields constructed in [] are too high,

though the lower bounds are still good enough.

Finally we present the table (the ameliorated version of the table

of []), where all the bounds and estimates are given together:

lower lower upper upper
bound example example bound

all fields . .––. .––. .

GRH totally real . .––. .––. .

totally complex . .––. .––. .

all fields . .––. .––. .

Unconditional totally real . .––. .––. .

totally complex . .––. .––. .

2. Proof of Theorem 

Let ζK (s) be the Dedekind zeta function of the number field K and

cK its residue at s=1. By wK we denote the number of roots of unity in

K, and by r1, r2 the number of real and complex places of K respectively.

We have the following residue formula (see [, Ch. VIII, § ]):

c =
2r1 (2π)r2 hK RK

wK

p
DK

.

Since Æ
wK/2 ¶ ϕ(wK ) = [Q(ζwK

) : Q] ¶ [K : Q] = nK ,

we note that wK ¶ 2n2
K

so log wK j
/gK j
→ 0. Thus, it is enough to prove

that logcK j
/ log DK j

→0.

As for the upper bound we have

Theorem  (See [, Theorem ]). Let K be a number field of degree

n¾2. Then,

cK ¶
� e log DK

2(n−1)

�n−1
. ()

Moreover, 1/2¶ρ<1 and ζK (ρ)=0 imply

cK ¶ (1−ρ)
� e log DK

2n

�n
. ()
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Using the estimate () we get (even without the assumption of al-

most normality) the “easy inequality”:

logcK j

log DK j

¶
n j−1

log DK j

�
log

e

2
+ log

log DK j

n j−1

�
→ 0.

As for the lower bound the business is much more tricky and we will

proceed to the proof after giving a few preliminary statements.

Let K be a number field other than Q. A real number ρ is called an

exceptional zero of ζK (s) if ζK (ρ)=0 and

1− (4 log DK )−1 ¶ ρ < 1;

an exceptional zero ρ of ζK (s) is called its Siegel zero if

1− (16 log DK )−1 ¶ ρ < 1.

Our proof will be based on the following fundamental property of

Siegel zeroes proved by Stark:

Theorem  (see [, Lemma ]). Let K be an almost normal num-

ber field, and let ρ be a Siegel zero of ζK (s). Then there exists a quadratic

subfield k of K such that ζk(ρ)=0.

The next estimate is also due to Stark:

Theorem  (See [, Lemma ] or [, Theorem ]). Let K be a num-

ber field and let ρ be the exceptional zero of ζK (s) if it exists and ρ =

=1− (4 log DK )−1 otherwise. Then there is an absolute constant c<1 (ef-

fectively computable) such that

cK > c(1−ρ). ()

Our proof of Theorem  will be similar to the proof of the classical

Brauer––Siegel theorem given in []. We will use the Brauer––Siegel re-

sult for quadratic fields, a simple proof of which is given in []. There

are two cases to consider.

1. First, assume that ζK j
(s) has no Siegel zero. From () we deduce

that

cK j
> c(1−ρ) ¾ c

�
1−

�
1− 1

16 log DK j

��
=

c

16 log DK j

. ()

2. Second, assume that there exists a Siegel zero ρ of ζK j
(s). From

Theorem  we see that there exists a quadratic subfield k j of K j such that

ζk j
(ρ)=0. Applying () and () we obtain:

cK j
=

cK j

ck j

ck j
¾

c(1−ρ)

(1−ρ)
� e log Dk j

4

�2
ck j
=

16c

e2 log2 Dk j

ck j
. ()
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If the number of fields K j for which the second case holds is finite,

then, using the fact that log DK j
→∞, we get the desired lower estimate

from ().

Otherwise, we note that for a number field there exists at most one

exceptional zero (See [, Lemma ], so, applying this statement to the

fields k j , we get that only finitely many of them may be isomorphic to

each other and so Dk j
→∞ as j→∞. Thus we may use the Brauer––Siegel

result for quadratic fields:

logck j

log DK j

¶
logck j

log Dk j

→ 0.

Finally from (), we get:

logcK j

log DK j

¾
16c

e2 log DK j

−2
log log Dk j

log DK j

+

logck j

log DK j

→ 0.

This concludes the proof.

Remark . Our proof of Theorem  is explicit and effective if all

the fields in the family K contain no quadratic subfield and thus the

corresponding zeta function does not have Siegel zeroes.

3. Proof of Theorem 

First we recall briefly some constructions related to class field towers.

Let us fix a prime number ℓ. For a finitely generated pro-ℓ group G, we

let d(G)= dimFℓ H1(G, Fℓ) be its generator rank. Let T be a finite set

of ideals of a number field K such that no prime in T is a divisor of ℓ.

We denote by KT the maximal ℓ-extension of K unramified outside T ,

GT =Gal(KT/K). We let

θK ,T =

�
1, if T 6= ∅ and K contains a primitive ℓth root of unity;

0, otherwise.

Then we have (see [, Theorems  and ]):

Theorem . If d(GT )¾ 2+ 2
Æ

r1(K)+ r2(K)+θK ,T , then KT is infi-

nite.

To estimate d(GT ) we use the following theorem

Theorem  (See [, Section ]). Let K/k be a finite Galois exten-

sion, r1= r1(k), r2= r2(k), ρ be the number of real places of k, ramified

in K, t be the number of primes in k, ramified in K. We set δℓ = 1, if k

contains a primitive root of degree ℓ of unity and δℓ= 0 otherwise. Then
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we have:

d(GT ) ¾ d(G∅) ¾ t− r1− r2+ρ−δℓ.
The number field arithmetic behind the construction of our theo-

rem  was mainly carried out with the help of the computer package

. However, we would like to present our examples in the way suitable

for non-computer check. We give here the proof of the first part of our

theorem, as the proof of the second part is very much similar and may

be carried out simply by repeating all the steps of the proof given here.

We let k=Q(ξ), where ξ is a root of f (x)=x6
+x4−4x3−7x2−x+1.

Then k is a field of signature (4, 1) and discriminant d f=dk=−23·35509.

Its ring of integers is Ok=Z[ξ] and its class number is equal to 1. The

principle ideal of norm 7 ·13 ·192 ·232 ·29 ·31 generated by

η = 671ξ5−467ξ4
+994ξ3−3360ξ2−2314ξ+961

factors into eight different prime ideals of Ok. In fact, one may see that

η=π7π13π19π
′
19
π23π

′
23
π29π31, where

π7 = −9ξ5
+6ξ4−13ξ3

+44ξ2
+31ξ−12,

π13 = −7ξ5
+5ξ4−11ξ3

+36ξ2
+23ξ−9,

π19 = 5ξ5−4ξ4
+8ξ3−26ξ2−15ξ+6,

π′
19
= 5ξ5−3ξ4

+7ξ3−24ξ2−20ξ+6,

π23 = −5ξ5
+4ξ4−8ξ3

+26ξ2
+15ξ−9,

π′
23
= 6ξ5−4ξ4

+9ξ3−30ξ2−22ξ+6,

π29 = 11ξ5−8ξ4
+17ξ3−56ξ2−35ξ+16,

π31 = 7ξ5−5ξ4
+11ξ3−36ξ2−22ξ+7.

K= k(
p
η) is a totally complex field of degree  overQ with the relative

discriminant DK/k equal to (η) as η=β2
+4γ, where β=ξ5

+ξ4
+ξ3

+1,

γ=−173ξ5
+ 112ξ4− 270ξ3

+ 815ξ2
+ 576ξ− 237. From this we see

that dK = 7 · 13 · 192 · 232 · 29 · 31 · 232 · 355092. From Theorem  we

deduce that

d(G∅) ¾ t− r1(k)− r2(k)+ρ−1 = 8−4−1+4−1 = 6.

The right hand side of the inequality from Theorem  is equal to 2+2
p

6≈
≈6.8989<7, so it is enough to show that d(GT )>d(G∅), and to do this

it is enough to construct a set of prime ideals T and an extension of K,

ramified exactly at T .
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Let π3 =−6ξ5
+ 4ξ4 − 9ξ3

+ 30ξ2
+ 21ξ− 7 be the generator of a

prime ideal of norm  in Ok and T be the set consisting of one prime

ideal of OK over π3Ok. We see that

π3π19 = 11ξ5−8ξ4
+17ξ3−56ξ2−35ξ+14 = ρ2

+4σ,

where ρ= ξ5
+ ξ3

+ ξ2
+ 1, σ= 2ξ5 − 8ξ4− 14ξ3 − 28ξ2 − 9ξ+ 5, so

k(
p
π3π19)/k is ramified exactly at π3 and π19. But π19 already ramifies

in K that is why K(
p
π3π19)/K is ramified exactly at T . Thus we have

showed that d(GT )¾7 and KT/K is indeed infinite.

To complete our proof we need a few more results.

Theorem  (GRH Basic Inequality, see [, Theorem .]). For an

asymptotitically exact family of number fields under GRH one has:

∑
q

φq log q
p

q−1
+φR

�
log 2

p
2π+

π
4
+
γ

2

�
+φC(log 8π+γ) ¶ 1, ()

the sum beeing taken over all prime powers q.

Theorem  (See [, Theorem ]). Let K be a number field of degree

n over Q, such that KT is infinite and assume that KT =

∞⋃
i=1

Ki. Then

lim
i→∞

gi

ni
¶

gK

nK
+

∑
p∈T

log(NK/Qp)

2nK
.

For our previously constructed field K the genus is equal to gK ≈
≈25.3490… From Theorem  we easily see that φR=0 and

12

2gK +2 log 3
¶ φC ¶

12

2gK
,

i. e., 0.23669 <φC < 0.22687. The lower bound for BS(KT ) is clearly

equal to

BSlower = 1−φR log 2−φC log(2π) ¶ 0.56498….

Knowing the decomposition in K of small primes ofQ, we may now apply

the linear programming approach to get the upper bound for BS(KT ).

This is done using the explicit formula () for the Brauer––Siegel ratio

along with the basic inequality () and the inequality

∞∑
m=1

mφpm ¶ φR+2φC,
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taken as the restrictions. This was done using the PARI package. As the

calculations are rather cumbersome we will give here only the final re-

sult: BSupper≈0.59748…, and the bound is attained for φ7=φ9=φ13=

=0.03944…, φ19=0.01002… �
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On the generalizations

of the Brauer––Siegel theorem

Abstract. The classical Brauer––Siegel theorem states that if k runs

through the sequence of normal extensions of Q such that
nk

log |Dk|
→0,

then
log(hkRk)

log
p
|Dk|
→1. In this paper we give a survey of various generaliza-

tions of this result including some recent developements in the study of

the Brauer––Siegel ratio in the case of higher dimensional varieties over

global fields. We also present a proof of a higher dimensional version

of the Brauer––Siegel theorem dealing with the study of the asymptotic

properties of the residue at s= d of the zeta function in a family of

varieties over finite fields.

1. Introduction

Let K be an algebraic number field of degree nK = [K :Q] and dis-

criminant DK . We define the genus of K as gK = log
p

DK . By hK we de-

note the class-number of K, RK denotes its regulator. We call a sequence

{Ki} of number fields a family if Ki is non-isomorphic to K j for i 6= j. A

family is called a tower if also Ki⊂Ki+1 for any i. For a family of number

fields we consider the limit

BS(K ) := lim
i→∞

log(hKi
RKi

)

gKi

.

The classical Brauer––Siegel theorem, proved by Brauer (see []) can be

stated as follows:

Theorem . (Brauer––Siegel). For a family K ={Ki} we have

BS(K ) := lim
i→∞

log(hKi
RKi

)

gKi

= 1

if the family satisfies two conditions:

(i) lim
i→∞

nKi

gKi

=0;

(ii) either the generalized Riemann hypothesis (GRH) holds, or all the

fields Ki are normal over Q.

Alexey Zykin, On the generalizations of the Brauer––Siegel theorem, Arithmetic, geom-

etry, cryptography and coding theory, Contemporary Mathematics, vol. , Amer. Math.

Soc., Providence, RI, , ––.



. Introduction 

The initial motivation for the Brauer––Siegel theorem can be traced

back to a conjecture of Gauss:

Conjecture . (Gauss). There are only  imaginary quadratic fields

with class number equal to one, namely those having their discriminants

equal to −3, −4, −7, −8, −11, −19, −43, −67, −163.

The first result towards this conjecture was proven by Heilbronn in

[]. He proved that hK→∞ as DK→−∞. Moreover, together with Lin-

foot [] he was able to verify that Gauss’ list was complete with the

exception of at most one discriminant. However, this “at most one” part

was completely ineffective. The initial question of Gauss was settled inde-

pendently by Heegner [], Stark [] and Baker [] (initially the paper

by Heegner was not acknowledged as giving the complete proof). We

refer to [] for a more thorough discussion of the history of the Gauss

class number problem.

A natural question was to find out what happens with the class num-

ber in the case of arbitrary number fields. Here the situation is more

complicated. In particular a new invariant comes into play: the regulator

of number fields, which is very difficult to separate from the class num-

ber in asymtotic considerations (in particular, for this reason the other

conjecture of Gauss on the infinitude of real quadratic fields having class

number one is still unproven). A major step in this direction was made by

Siegel [] who was able to prove Theorem . in the case of quadratic

fields. He was followed by Brauer [] who actually proved what we call

the classical Brauer––Siegel theorem.

Ever since a lot of different aspects of the problem have been studied.

For example, the major difficulty in applying the Brauer––Siegel theorem

to the class number problem is its ineffectiveness. Thus many attempts

to obtain good explicit bounds on hK RK were undertaken. In particular

we should mention the important paper of Stark [] giving an explicit

version of the Brauer––Siegel theorem in the case when the field contains

no quadratic subfields. See also some more recent papers by Louboutin

[], [] where better explicit bounds are proven in certain cases. Even

stronger effective results were needed to solve (at least in the normal

case) the class-number-one problem for CM fields, see [], [], [].

In another direction, assuming the generalized Riemann hypothesis

(GRH) one can obtain more precise bounds on the class number then

those given by the Brauer––Siegel theorem. For example in the case of

quadratic fields we have hK≪D
1/2
K (log log DK/ log DK ). In particular they

are known to be optimal in many cases (see [], [], []).
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A full survey of the problems stemming from the study of the Brauer––

Siegel type questions definitely lies beyond the scope of this article. Our

goal is more modest. Here we survey the results that generalize the

classical Brauer––Siegel theorem. In §  the case of families of number

fields violating one (or both) of the conditions (i) and (ii) of theorem .

is discussed. In particular we introduce the notion of Tsfasman––Vlădu̧t

invariants of global fields that allow to express the Brauer––Siegel limit

in general. In §  we survey the known results and conjectures about the

Brauer––Siegel type statements in the higher dimensional situation. Fi-

nally, in the last §  we prove a Brauer––Siegel type result (Theorem .)

for families of varieties over finite fields. This theorem expresses the

asymptotic properties of the residue at s = d of the zeta function of

smooth projective varieties over finite fields via the asymptotics of the

number of Fqm -points on them.

2. The case of global fields: Tsfasman––Vlăduţ approach

A natural question is whether one can weaken the conditions (i) and

(ii) of Theorem .. The first condition seems to be the most restrictive

one. Tsfasman and Vlădu̧t were able to deal with it first in the function

field case [], [] and then in the number field case [] (which was

as usual more difficult, especially from the analytical point of view). It

turned out that one has to take in account non-archimedian place to

be able to treat the general situation. Let us introduce the necessary

notation in the number field case (for the function field case see § ).

For a prime power q we set

Φq(Ki) := |{v ∈ P(Ki) : Norm(v) = q}|,
where P(Ki) is the set of non-archimedian places of Ki. Taking in account

the archimedian places we also put ΦR(Ki)= r1(Ki) and ΦC(Ki)= r2(Ki),

where r1 and r2 stand for the number of real and (pairs of) complex

embeddings.

We consider the set A={R,C; 2, 3, 4, 5, 7, 8, 9, …} of all prime pow-

ers plus two auxiliary symbols R and C as the set of indices.

Definition .. A family K = {Ki} is called asymptotically exact if

and only if for any α∈ A the following limit exists:

φα = φα(K ) := lim
i→∞

Φα(Ki)

gKi

.

We call an asymptotically exact family K asymptotically good (respec-

tively, bad) if there exists α ∈ A with φα > 0 (respectively, φα = 0 for
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any α ∈ A). The φα are called the Tsfasman––Vlădu̧t invariants of the

family {Ki}.

One knows that any family of number fields contains an asymptotically

exact subfamily so the condition on a family to be asymptotically exact is

not very restrictive. On the other hand, the condition of asymptotical good-

ness is indeed quite restrictive. It is easy to see that a family is asymptoti-

cally bad if and only if it satisfies the condition (i) of the classical Brauer––

Siegel theorem. In fact, before the work of Golod and Shafarevich []

even the existence of asymptotically good families of number fields was

unclear. Up to now the only method to construct asymptotically good fam-

ilies in the number field case is essentially based on the ideas of Golod and

Shafarevich and consists of the usage of classfield towers (quite often in

a rather elaborate way). This method has the disadvantage of beeing very

inexplicit and the resulting families are hard to control (ex. splitting of the

ideals, ramification, etc.). In the function field case we dispose of a much

wider range of constructions such as the towers coming from supersin-

gular points on modular curves or Drinfeld modular curves ([], []),

the explicit iterated towers proposed by Garcia and Stichtenoth [], []

and of course the classfield towers as in the number field case (see []

for the treatement of the function field case).

This partly explains why so little is known about the above set of in-

variants φα. Very few general results about the structure of the set of pos-

sible values of (φα) are available. For instance, we do not know whether

the set {α |φα 6=0} can be infinite for some familyK . We refer to [] for

an exposition of most of the known results on the invariants φα.

Before formulating the generalization of the Brauer––Siegel theorem

proven by Tsfasman and Vlădu̧t in [] we have to give one more defini-

tion. We call a number field almost normal if there exists a finite tower

of number fields Q=K0⊂K1⊂· · ·⊂Km=K such that all the extensions

Ki/Ki−1 are normal.

Theorem . (Tsfasman––Vlădu̧t). Assume that for an asymptoti-

cally good tower K any of the following conditions is satisfied:

• GRH holds;

• all the fields Ki are almost normal over Q.

Then the limit BS(K )= lim
i→∞

log(hKi
RKi

)

gKi

exists and we have:

BS(K ) = 1+
∑
q

φq log
q

q−1
−φR log 2−φC log 2π,

the sum beeing taken over all prime powers q.
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We see that in the above theorem both the conditions (i) and (ii) of

the classical Brauer––Siegel theorem are weakend. A natural supplement

to the above theorem is the following result obtained by the author in []:

Theorem . (Zykin). LetK ={Ki} be an asymptotically bad family

of almost normal number fields (i. e. a family for which nKi
/gKi
→ 0 as

i→∞). Then we have BS(K )=1.

One may ask if the values of the Brauer––Siegel ratio BS(K ) can re-

ally be different from one. The answer is “yes”. However, due to our lack

of understanding of the set of possible (φα) there are only partial results.

Under GRH one can prove (see []) the following bounds on BS(K ):

0.5165¶ BS(K )¶ 1.0938. The existence bounds are weaker. There is

an example of a (class field) tower with 0.5649¶BS(K )¶ 0.5975 and

another one with 1.0602¶ BS(K )¶ 1.0938 (see [] and []). Our

inability to get the exact value of BS(K ) lies in the inexplicitness of

the construction: as it was said before, class field towers are hard to

control. A natural question is whether all the values of BS(K ) between

the bounds in the examples are attained. This seems difficult to prove

at the moment though one may hope that some density results (i. e. the

density of the values of BS(K ) in a certain interval) are within reach of

the current techniques.

Let us formulate yet another version of the generalized Brauer––

Siegel theorem proven by Lebacque in []. It assumes GRH but has the

advantage of beeing explicit in a certain (unfortunately rather weak)

sense:

Theorem . (Lebacque). Let K = {Ki} be an asymptotically exact

family of number fields. Assume that GRH in true. Then the limit BS(K )

exists, and we have:

∑
q¶x

φq log
q

q−1
−φR log 2−φC log 2π = BS(K )+O

� log xp
x

�
.

This theorem is an easy corollary of the generalised Mertens theorem

proven in []. We should also note that Lebacque’s apporoach leads to a

unified proof of Theorems . and . with or without the assumption of

GRH.

3. Varieties over global fields

Once we are in the realm of higher dimensional varieties over global

fields the question of finding a proper analogue of the Brauer––Siegel

theorem becomes more complicated and the answers which are currently
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available are far from being complete. Here we have essentially three

approaches: the one by the author (which leads to a fairly simple result),

another one by Kunyavskii and Tsfasman and the last one by Hindry and

Pacheko (which for the moment gives only plausible conjectures). We

will present all of them one by one.

The proof of the classical Brauer––Siegel theorem as well as those of

its generalisations discussed in the previous section passes through the

residue formula. Let ζK (s) be the Dedekind zeta function of a number

field K and cK its residue at s=1. By wK we denote the number of roots

of unity in K. Then we have the following classical residue formula:

cK =
2r1 (2π)r2 hK RK

wK

p
DK

.

This formula immediately reduces the proof of the Brauer––Siegel theo-

rem to an appropriate asymptotical estimate for cK as K varies in a family

(by the way, this makes clear the connection with GRH which appears in

the statement of the Brauer––Siegel theorem). So, in the higher dimen-

sional situation we face two completely different problems:

(i) Study the asymptotic properties of a value of a certain ζ or L-function.

(ii) Find an (arithmetic or geometric) interpretation of this value.

One knows that just like in the case of global fields in the d-dimen-

sional situation zeta function ζX (s) of a variety X has a pole of order

one at s=d. Thus the first idea would be to take the residue of ζX (s) at

s=d and study its asymptotic behaviour. In this direction we can indeed

obtain a result. Let us proceed more formally.

Let X be a complete non-singular absolutely irreducible projective

variety of dimension d defined over a finite field Fq with q elements,

where q is a power of p. Denote by |X | the set of closed points of X . We

put Xn = X ⊗Fq
Fqn and ¯̄X = X ⊗Fq

Fq. Let Φqm be the number of places

of X having degree m, that is Φqm = |{p ∈ |X | | deg(p)=m}|. Thus the

number Nn of Fqn -points of the variety Xn is equal to

Nn =
∑
m|n

mΦqm .

Let bs(X)=dimQl
H s(¯̄X ,Ql) be the l-adic Betti numbers of X . We set

b(X)=maxi=1…2d bi(X). Recall that the zeta function of X is defined for

Re(s)>d by the following Euler product:

ζX (s) =
∏

p∈|X |

1

1−N(p)−s =

∞∏
m=1

�
1

1−q−sm

�Φqm

,
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where N(p)= q−degp. It is known that ζX (s) has an analytic continu-

tation to a meromorphic function on the complex plane with a pole of

order one at s= d. Furthermore, if we set Z(X , q−s)= ζX (s) then the

function Z(X , t) is a rational function of t= q−s.

Consider a family {X j} of complete non-singular absolutely irre-

ducible d-dimensional projective varieties over Fq. We assume that the

families under consideration satisfy b(X j )→∞ when j→∞. Recall (see

[]) that such a family is called asymptotically exact if the following

limits exist:

φqm ({X j }) = lim
j→∞

Φqm (X j)

b(X j)
, m = 1, 2, …

The invariants φqm of a family {X j } are called the Tsfasman––Vlădu̧t in-

variants of this family. One knows that any family of varieties contains

an asymptotically exact subfamily.

Definition .. We define the Brauer––Siegel ratio for an asymptot-

ically exact family as

BS({X j}) = lim
j→∞

log |c(X j)|
b(X j)

,

where c(X j) is the residue of Z(X j , t) at t= q−d.

In §  we prove the following generalization of the classical Brauer––

Siegel theorem:

Theorem .. For an asymptotically exact family {X j} the limit

BS({X j}) exists and the following formula holds:

BS({X j}) =
∞∑

m=1

φqm log
qmd

qmd−1
. (.)

However, we come across a problem when we trying to carry out

the second part of the strategy sketched above. There seems to be no

easy geometric interpretaion of the invariant c(X) (apart from the case

d= 1 where we have a formula relating cX to the number of Fq-points

on the Jacobian of X). See however [] for a certain cohomological

interpretation of c(X).

Let us now switch our attention to the two other approaches by Kun-

yavskii––Tsfasman and by Hindry––Pacheko. Both of them have for their

starting points the famous Birch––Swinnerton-Dyer conjecture which ex-

presses the value at s=1 of the L-function of an abelian variety in terms

of certain arithmetic invariants related to this variety. Thus, in this case
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we have (at least conjecturally) an interpretation of the special value

of the L-function at s= 1. However, the situation with the asymptotic

behaviour of this value is much less clear. Let us begin with the approach

of Kunyavskii––Tsfasman. To simplify our notation we restrict ourselves

to the case of elliptic curves and refer for the general case of abelian

varieties to the original paper [].

Let K be a global field that is either a number field or K = Fq(X)

where X is a smooth, projective, geometrically irreducible curve over a

finite field Fq. Let E/K be an elliptic curve over K. Let Ш := |Ш(E)| be

the order of the Shafarevich––Tate group of E, and ∆ the determinant of

the Mordell––Weil lattice of E (see [] for definitions). Note that in a

certain sense Ш and ∆ are the analogues of the class number and of the

regulator respectively. The goal of Kunyavskii and Tsfasman in [] is to

study the asymptotic behaviour of the product Ш ·∆ as g→∞. They are

able to treat the so-called constant case:

Theorem . (Kunyavskii––Tsfasman). Let E= E0×Fq
K where E0 a

fixed elliptic curve over Fq. Let K vary in an asymptotically exact fam-

ily {Ki}= {Fq(Xi)}, and let φqm =φqm ({Xi}) be the corresponding Tsfas-

man––Vlăduţ invariants. Then

lim
i→∞

logq(Шi ·∆i)

gi
= 1−

∞∑
m=1

φqm logq

Nm(E0)

qm ,

where Nm(E0)= |E0(Fqm )|.
Note that there is no real need to assume the above mentioned Birch

and Swinnerton-Dyer conjecture as it was proven by Milne [] in the

constant case. The proof of the above theorem uses this result of Milne to

get an explicit formula for Ш ·∆ thus reducing the proof of the theorem

to the study of asymptotic properties of curves over finite fields the latter

ones being much better known.

Kunyavskii and Tsfasman also make a conjecture in a certain non con-

stant case. To formulate it we have to introduce some more notation. Let E

be again an arbitrary elliptic K-curve. Denote by E the corresponding ellip-

tic surface (this means that there is a proper connected smooth morphism

f : E → X with the generic fibre E). Assume that f fits into an infinite Ga-

lois tower, i. e. into a commutative diagram of the following form:

E = E0
oo

f

��

E1
oooo

��

… oo Ei
oooo

��

…

X = X0
oo X1

oo … oo Xi
oo …

(.)
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where each lower horizontal arrow is a Galois covering. For every v ∈ X

closed point in X , let Ev = f −1(v). Let Φv,i denote the number of points

of Xi lying above v, φv = lim
i→∞
Φv,i/gi (we suppose the limits exist). Fur-

thermore, denote by fv,i the residue degree of a point of Xi lying above

v (the tower being Galois, this does not depend on the point), and let

fv= lim
i→∞

fv,i. If fv=∞, we have φv=0. If fv is finite, denote by N(Ev , fv)

the number of Fq fv -points of Ev . Finally, let τ denote the “fudge” factor

in the Birch and Swinnerton-Dyer conjecture (see [] for its precise

definition). Under this setting Kunyavskii and Tsfasman formulate the

following conjecture in []:

Conjecture . (Kunyavskii––Tsfasman). Assuming the Birch and

Swinnerton-Dyer conjecture for elliptic curves over function fields, we have

lim
i→∞

logq(Шi ·∆i ·τi)

gi
= 1−

∑
v∈X

φv logq

N(Ev, fv)

q fv
.

Let us finally turn our attention to the approach of Hindry and

Pacheko. They treat the case in some sense “orthogonal” to that of Kun-

yavskii and Tsfasman. Here, contrary to the previous setting of this

section, we consider the number field case as the more complete one. We

refer to [] for the function field case. As in the approach of Kunyavskii

and Tsfasman we study elliptic curves over global fields. However, here

the ground field K is fixed and we let vary the elliptic curve E. Denote

by h(E) the logarithmic height of an elliptic curve E (see [] for the

precise definition, asymptotically its properties are close to those of the

conductor). Hindry in [] formulates the following conjecture:

Conjecture . (Hindry––Pacheko). Let Ei run through a family of

pairwise non-isomorphic elliptic curves over a fixed number field K. Then

lim
i→∞

log(Шi ·∆i)

h(Ei)
= 1.

To motivate this conjecture, Hidry reduces it to a conjecture on the

asymptotics of the special value of L-functions of elliptic curves at s=1

using the conjecture of Birch and Swinnerton-Dyer as well as that of Szpiro

and Frey (the latter one is equivalent to the ABC conjecture when K=Q).

Let us finally state some open questions that arise naturally from the

above discussion.

• What is the number field analogue of Theorem .?

It seems not so difficult to prove the result corresponding to Theo-

rem . in the number field case assuming GRH. Without GRH the situ-

ation looks much more challenging. In particular, one has to be able to
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controll the so called Siegel zeroes of zeta functions of varieties (that is

real zeroes close to s=d) which might turn out to be a difficult problem.

The conjecture . can be easily written in the number field case. How-

ever, in this situation we have even less evidence for it since Theorem .

is a particular feature of the function field case.

• How can one unify the conjectures of Kunyavskii––Tsfasman and

Hindry––Pacheko?

In particular it is unclear which invariant of elliptic curves should

play the role of genus from the case of global fields. It would also be

nice to be able to formulate some conjectures for a more general type of

L-functions, such as automorphic L-functions.

• Is it possible to justify any of the above conjectures in certain par-

ticular cases? Can one prove some cases of these conjectures “on

average” (in some appropriate sense)?

For now the only case at hand is the one given by Theorem ..

4. The proof of the Brauer––Siegel theorem for varieties

over finite fields: case s=d

Recall that the trace formula of Lefschetz––Grothendieck gives the

following expression for Nn –– the number of Fqn points on a variety X :

Nn =

2d∑
s=0

(−1)sqns/2
bs∑

i=1

αn
s,i

, (.)

where {qs/2αs,i} is the set of of inverse eigenvalues of the Frobenius en-

domorphism acting on H s(¯̄X ,Ql). By Poincaré duality one has b2d−s= bs

and αs,i = α2d−s,i. The conjecture of Riemann––Weil proven by Deligne

states that the absolute values of αs,i are equal to 1. One also knows that

b0=1 and α0,1=1.

One can easily see that for Z(X , q−s)=ζX (s) we have the following

power series expansion:

log Z(X , t) =
∞∑

n=1

Nn
tn

n
. (.)

Combining (.) and (.) we obtain

Z(X , t) =
2d∏

s=0

(−1)s−1Ps(X , t), (.)

where Ps(X , t)=
bi∏

i=1

(1− qs/2αs,i). Furthermore we note that P0(X , t)=

=1− t and P2d(X , t)=1− qdt.
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To prove Theorem . we will need the following lemma.

Lemma .. For c→∞ we have

log |c(X j)|
b(X j)

=

c∑
l=1

Nl(X j)−qdl

l
q−dl
+Rc(X j),

with Rc(X j)→0 uniformly in j.

Proof of the Lemma. Using (.) one has

log |c(X j)|
b(X j)

+d
log q

b(X j)
=

1

b(X j)

2d−1∑
s=0

(−1)s+1 log |Ps(X j , q−d)| =

=
1

b(X j)

2d−1∑
s=0

(−1)s+1
bs(X j )∑
k=1

log(1− q(s−2d)/2αs,i) =

= − 1

b(X j )

2d−1∑
s=0

(−1)s+1
bs(X j )∑
k=1

∞∑
l=1

q(s−2d)l/2αl
s,i

l
=

=
1

b(X j)

c∑
l=1

q−dl

l

� 2d∑
s=0

(−1)sqsl/2
bs(X j )∑
k=1

αl
s,i
− qdl

�
+

+
1

b(X j)

2d−1∑
s=0

(−1)s
bs(X j )∑
k=1

∞∑
l=c+1

q(s−2d)l/2αl
s,i

l
=

=

c∑
l=1

Nl(X j)−qdl

l
q−dl
+Rc(X j).

An obvious estimate gives

|Rc(X j)| ¶

2d∑
s=0

bs(X j)

b(X j)

∞∑
l=c+1

q−l/2

l
→ 0

for c→∞ uniformly in j.

Now let us note that

1

b(X j)

c∑
l=1

1

l
¶

2

b(X j)
log c→ 0

when log c/b(X j )→0. Thus to prove the main theorem we are left to deal

with the following sum:

1

b(X j)

c∑
l=1

q−ld

l
Nl(X j) =

1

b(X j)

c∑
l=1

q−dl

l

∑
m|l

mΦqm =
1

b(X j )

c∑
m=1

Φqm

⌊c/m⌋∑
k=1

q−mkd

k
=

=
1

b(X j)

c∑
m=1

Φqm log
qmd

qmd−1
− 1

b(X j)

c∑
m=1

Φqm

∞∑
⌊c/m⌋+1

q−mkd

k
.
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Let us estimate the last term:

1

b(X j )

c∑
m=1

Φqm

∞∑
k=⌊c/m⌋+1

q−mkd

k
¶

¶
1

b(X j)

c∑
m=1

Nm(X j)q−md(⌊c/m⌋+1)

m(⌊c/m⌋+1)(1−q−md)
¶

1

b(X j)

c∑
m=1

Nm(X j)q−cd

c(1−q−md)
¶

¶
1

b(X j)

c∑
m=1

�
qmd
+1+

2d−1∑
s=1

bsq
ms/2

�
q−dc

c(1−q−md)
¶

¶
1

b(X j )

�
qcd
+1+

2d−1∑
s=1

bsq
cs/2

�
q−dc

(1−q−1)
→ 0

as both b(X j )→∞ and c→∞.

Now, to finish the proof we will need an analogue of the basic in-

equality from []. In the higher dimensional case there are several ver-

sions of it. However, here the simplest one will suffice. Let us define for

i=0…2d the following invariants:

βi({X j }) = lim sup
j

bi(X j)

b(X j)
.

Theorem .. For an asymptotically exact family {X j} we have the

inequality:
∞∑

m=1

mφqm

q(2d−1)m/2−1
¶ (q(2d−1)/2−1)

� ∑
i≡1mod 2

βi

q(i−1)/2+1
+

∑
i≡0mod 2

βi

q(i−1)/2−1

�
.

Proof. See [, Remark .].

Applying this theorem together with the fact that

log
qmd

qmd −1
= O

�
1

qdm−1

�
= O

�
m

q(2d−1)m/2−1

�

when m→∞, we conclude that the series on the right hand side of (.)

converges. Thus the difference

∞∑
m=1

φqm log
qmd

qmd−1
− 1

b(X j)

c∑
m=1

Φqm log
qmd

qmd−1
=

=

c∑
m=1

�
φqm −

Φqm

b(X j)

�
log

qmd

qmd−1
−

∞∑
m=c+1

φqm log
qmd

qmd−1
→ 0

when c→∞, j→∞ and j is large enough compared to c. This concludes

the proof of Theorem ..
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extensions of global fields, Moscow Math. J.  (), no. , ––.
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Brauer––Siegel theorem for families

of elliptic surfaces over finite fields

The classical Brauer––Siegel theorem for number fields proved by

Brauer (see []) claims that, if k ranges over a sequence of number

fields normal over Q and such that
nk

log |Dk|
→ 0, then

log(hk Rk)

log
p
|Dk|
→ 1.

Here Dk, hk, and Rk stand for the discriminant, the class number, and

the regulator of the field k, respectively. This theorem was generalized

by M. A. Tsfasman and S. G. Vlădu̧t (see []) to the case in which the

condition nk/ log |Dk|→ 0 fails to hold (asymptotically good families of

fields). Here the limit thus obtained, lim log(hkRk)/ log
p
|Dk|, need not

be equal to 1.

The existence of a deep analogy between number fields and function

fields has been well known for a long time. Here many results for func-

tion fields can be obtained in a much simpler way (for instance, analytic

problems related to zeta functions disappear). The analog of the Brauer––

Siegel theorem for function fields is proved in an essentially simpler way,

and the normality condition (which is present in the case of number

fields) turns out to be excessive.

Let {Xi} be a family of pairwise nonisomorphic smooth absolutely

irreducible projective curves over a finite field Fq of genus gi= g(Xi). Let

Φqm (Xi) be the number of points whose degree is exactly equal to m on

the curve Xi.

Definition . The numbers

φqm = lim
i→∞

Φqm (Xi)

gi

are said to be the Tsfasman––Vlăduţ invariants of the family {Xi}. If the

limits φqm exist, then the family is said to be asymptotically exact.

Let

Zi(t) =
∞∏

m=1

(1− tm)−Φm(Xi )

be the zeta function of the curve Xi. It has a pole of order one at the

point t=1/q, and we denote the residue of the function at the point by

A. I. Zykin, Brauer––Siegel theorem for families of elliptic surfaces over finite fields, Math-

ematical Notes,  (), no. , ––.



 Brauer––Siegel theorem for families of elliptic surfaces over finite fields

κi. As is well known, κi can be expressed in terms of the Fq-points of

the Jacobian of the curve Xi (an analog of the ideal class numbers in the

number field case). The following theorem holds, which was proved by

Tsfasman in [].

Theorem . The formula

lim
i→∞

logκi

gi
= 1+

∞∑
m=1

φqm log
qm

qm−1

holds for any asymptotically exact family of curves Xi.

Attempts to generalize this theorem to the multidimensional case

immediately lead to several results. First, for a family of algebraic vari-

eties of dimension d over a finite field Fq, one can study the behavior

of the residue of the zeta function at the point t = q−d. An analog of

Theorem  in this direction was obtained in []. However, the geometric

interpretation of the residue of the zeta function at the point t= q−d is

less simple here.

Another approach was suggested by Hindry in [] and by Kunyavskii

and Tsfasman in []. In these papers, the behavior of the value of the

L-function at the point s=1 is studied for families of elliptic curves. The

problem is of interest, because this value is related to subtle arithmetic

invariants of elliptic curves by the Birch––Swinnerton-Dyer conjecture.

Hindry formulates a conjecture (similar to the Brauer––Siegel theorem)

in the case of a family of elliptic curves over a chosen number field. In

this note, we are mainly interested in the function case, and therefore we

consider the Kunyavskii––Tsfasman approach in more detail.

Let us present several preliminary definitions. Let X be a smooth

projective curve over Fq, let K = Fq(X) be the function field of X , let

E/K be an elliptic curve, and let f : E→ X be the corresponding elliptic

surface. Consider the family of coverings

X = X0 ← X1 ← · · · ← Xi ← · · ·
and the family of elliptic surfaces Ei obtained by the base change,

E = E0

f

��

E1
oo

��

· · ·oo Ei
oo

��

· · ·oo

X = X0 X1
oo · · ·oo Xi

oo · · ·oo

Let Φv, f (Xi) be the number of points of degree f on Xi lying above

the point v ∈ |X |. Assume below that the limits φv, f = lim
i→∞

(Φv, f (Xi)/gi)
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exist for the family {Xi}. Denote by Ei the elliptic curve which is the

common fiber of the mappings Ei→ Xi. If v is a closed point of X , then

we set Nv= qdeg v . Let Nv, f (E) be the number of points on the reduction

Ev= f −1(v) of the curve E over the field FNv f . Write av, f (E)=Nv f
+1−

−Nv, f (E) and

Lv, f (E, s) =

¨
(1−av, f Nv− fs

+Nv f (1−2s))−1 if Ev is nonsingular;

(1−av, f Nv− fs)−1 otherwise.

Recall that the L-function of an elliptic curve E is defined as

LE(s) =
∏

v∈|X |
Lv,1(E, s).

We also introduce the limit L-function of the family {Ei/Ki} by

L{Ei/Ki }
(s) =

∏
v∈|X |

∞∏
f=1

Lv, f (E, s)φ f ,v .

Let rE be the order of zero of LE(s) at the point s= 1, and let cE be the

first nonzero coefficient in the expansion of LE(s) in the Taylor series at

s=1. Kunyavskii and Tsfasman [] formulate the following conjecture.

Conjecture. lim
i→∞

log |cEi
|

gi
=−

∑
v∈|X |

∞∑
f=1

φv, f log
Nv, f (E)

Nv f
.

A special case of this conjecture in the case of constant elliptic curves

(Ei= E′× Xi, where E′/Fq is a chosen elliptic curve) is also proved in [].

Unfortunately, the proof contains gaps. The transposition of the passage

to the limit in the infinite product for the L-function and the passage to

the limit as gi→∞ is not justified. Thus, at present, the conjecture is

verified for no family of elliptic curves.

Our main result is the proof of the following fact towards the con-

jecture.

Theorem . 1) The infinite product for L{Ei/Ki}
(s) converges for Re s¾1.

2) The following formula holds for Re s>1:

lim
i→∞

log LEi
(s)

gi
= log L{Ei/Ki}

(s).

3) Suppose that the family Ei/Ki satisfies the condition lim
i→∞

rEi
/gi=0.

Then

lim
i→∞

log |cEi
|

gi
¶ log L{Ei/Ki}

(1).
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Remarks. 1) The condition lim
i→∞

rEi
/gi = 0 holds for every constant

family of curves and holds rather often in the general case (see []).

2) The problem concerning the equality case in assertion 3) of the

theorem is quite subtle and is related to low-placed zeros of the L-func-

tions. For a detailed discussion of the problem (although in a somewhat

different situation), see [].
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Asymptotic properties of the Dedekind zeta

function in families of number fields

Our starting point is the classical Brauer––Siegel theorem for num-

ber fields proved by Brauer in []. It states that if K runs through a se-

quence of number fields normal over Q such that n
K
/log |DK |→0, then

log(h
K

RK )/log
p
|DK |→1. Here DK , h

K
, and RK are respectively the dis-

criminant, the class number, and the regulator of the field K.

In [] this theorem was generalized by Tsfasman and Vladuts to the

case when the condition n
K
/log |DK |→0 no longer holds. To formulate

this result we will need some notation. For a finite extension K/Q de-

note by Φq(K) the number of prime ideals of the ring of integers OK

having their norm equal to q. Denote by ΦR(K) and ΦC(K) the num-

ber of real and complex embeddings of K into C, respectively. Also let

g
K
= log

p
|DK | be the genus of the field K (by analogy with the function

field case). An extension K/Q is said to be almost normal if there exists

a tower of intermediate extensions K = Kn ⊇ Kn−1 ⊇ · · · ⊇ K1 ⊇ K0 =Q

such that Ki/Ki−1 is normal for all i.

Consider a family {Ki} of pairwise non-isomorphic number fields.

We define φα= lim
i→∞
Φα(Ki)/g

Ki
, α∈ {R,C, 2, 3, 4, 5, 7, 9, … }. If the lim-

its φα exist, then the family is said to be asymptotically exact. It is said

to be asymptotically good if there exists φα 6=0, and asymptotically bad

otherwise.

It is easy to check that the condition n
K
/log |DK |→0 in the Brauer––

Siegel theorem is equivalent to the condition that the corresponding fam-

ily be asymptotically bad. We can now formulate the theorem proved by

Tsfasman and Vladuts in [] in the asymptotically good case and by the

author in [] in the asymptotically bad case.

Theorem . For an asymptotically exact family {Ki},

lim
i→∞

log(hKi
RKi

)

gKi

= 1+
∑
q

φq log
q

q−1
−φR log 2−φC log(2π) ()

provided that all the Ki are almost normal over Q or the Generalized

Riemann Hypothesis (GRH) holds for the Dedekind zeta functions of the

fields Ki.

A. I. Zykin, Asymptotic properties of the Dedekind zeta function in families of number

fields, Russian Mathematical Surveys,  (), no. , ––.
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Let us define the limit zeta function of an asymptotically exact family

of number fields as

ζ{Ki}
(s) =

∏
q

(1− q−s)−φq .

Theorem C in [] implies the absolute convergence of the infinite product

for Re s ¾ 1. If c
K
= Ress=1ζK (s) is the residue of the Dedekind zeta

function of the field K at the point s= 1, then the equality () can be

restated as lim
i→∞

logc
Ki
/g

Ki
= logζ{Ki}

(1). Moreover, it was proved in []

that lim
i→∞

logζKi
(s)/g

Ki
= logζ{Ki }

(s) for Re s>1.

Our main goal is to investigate whether an analogous equality is

true for Re s<1. The case s=1 is essentially equivalent to the Brauer––

Siegel theorem, and we are at present unable to treat this question in

full generality without assuming the GRH. From now on, we assume

that the GRH holds for the Dedekind zeta functions of the fields under

consideration.

Assuming the GRH, one can prove ([], the corollary to Theorem A)

that the infinite product for ζ{Ki }
(s) is absolutely convergent for Re s¾1/2.

We now formulate our main results.

Theorem . Under the assumption of the GRH the equality

lim
i→∞

logζKi
(s)/g

Ki
= logζ{Ki }

(s)

holds for Re s>1/2 for an asymptotically exact family {Ki}.

The proof of the theorem uses estimates of the logarithmic deriva-

tives of zeta functions in the critical strip together with Vitali’s theorem

on limits of holomorphic functions.

Our result is weaker for s=1/2. We get the following upper estimate:

Theorem . Let ρ
Ki

be the first non-zero coefficient in the Taylor se-

ries expansion of ζKi
(s) at s=

1
2

, that is,

ζKi
(s) = ρ

Ki

�
s− 1

2

�rKi
+ o

��
s− 1

2

�rKi

�
.

Then under the assumption of the GRH,

lim
i→∞

log |ρ
Ki
|/g

Ki
¶ logζ{Ki}

(1/2)

for an asymptotically exact family {Ki}.

To prove Theorem  we employ methods similar to those in the proof

of the upper estimate in the equality of Theorem  as well as information
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about the limiting distribution of the zeros of zeta functions on the crit-

ical line in families of number fields.

The question of whether equality holds in the statement of Theo-

rem  is rather delicate. It is related to the so-called low-lying zeroes of

zeta functions, that is, zeroes of ζK (s) having small imaginary parts com-

pared to g
K

. We think that the equality lim
i→∞

log |ρ
Ki
|/g

Ki
= logζ{Ki}

(1/2)

need not be true for all families {Ki}, since the behaviour of low-lying

zeros of zeta functions is rather random. It might, however, be true for

‘most’ families. A more thorough discussion, though in a slightly different

situation (low-lying zeroes of L-functions associated with modular forms

on SL2(R)), can be found in [].

We formulate a corollary to Theorem . Recall that the Euler––Kro-

necker constant of a number field K is defined as γ
K
= c0(K)/c−1(K),

where ζK (s)= c−1(K)(s−1)−1
+ c0(K)+O(s−1). In [] Ihara obtained

an asymptotic formula for γ in families of curves over finite fields. We

have the following result, which is derived from Theorem .

Corollary . Under the assumption of the GRH,

lim
i→∞
γKi
/g

Ki
= −

∑
q

φqlog q/(q−1)

for an asymptotically exact family {Ki} of number fields.

This was stated in [] without assuming the GRH. Unfortunately,

the proof there is flawed. It uses an unjustified interchange of limits in

the sum over prime powers and the limit over the family {Ki}. Thus, the

question of whether such an equality holds without assuming the GRH

remains open.

I would like to thank my advisor M. A. Tsfasman for many fruitful

discussions and constant attention to my work. I would also like to thank

M. Balazard for sharing his valuable ideas with me and for his advice.
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Asymptotic properties of Dedekind zeta

functions in families of number fields

Résumé. Le but de cet article est de démontrer une formule qui ex-

prime la conduite asymptotique de la fonction zêta de Dedekind dans des

familles de corps globaux pour Re s>1/2 en supposant que l’Hypothèse

de Riemann Généralisée est vérifiée. On peut voir ce résultat comme

une généralization du théorème de Brauer-Siegel. Comme corollaire,

on obtient une formule limite pour des constants d’Euler––Kronecker

dans des familles de corps globaux.

Abstract. The main goal of this paper is to prove a formula that

expresses the limit behaviour of Dedekind zeta functions for Re s>1/2

in families of number fields, assuming that the Generalized Riemann

Hypothesis holds. This result can be viewed as a generalization of the

Brauer––Siegel theorem. As an application we obtain a limit formula for

Euler––Kronecker constants in families of number fields.

1. Introduction

Our starting point is the classical Brauer––Siegel theorem for num-

ber fields first proven by Siegel in the case of quadratic fields and then

by Brauer (see []) in a more general situation. This theorem states that

if K runs through a sequence of number fields normal over Q such that

nK/ log |DK |→0, then log(hK RK )/ log
p
|DK |→1. Here DK , hK , RK and

nK are respectively the discriminant, the class number, the regulator and

the degree of the field K.

In [] this theorem was generalized by Tsfasman and Vlădu̧t to the

case when the condition nK/ log |DK |→0 no longer holds. To formulate

this result we will need to introduce some notation.

For a finite extension K/Q, let Φq(K) be the number of prime ideals

of the ring of integers OK with norm q, i. e. Φq(K)= |{p |Normp= q}|.
Furthermore, denote by ΦR(K) and ΦC(K) the number of real and com-

plex places of K respectively. Let gK = log
p
|DK | be the genus of the field

K (in analogy with the function field case). An extension K/Q is called

Alexey Zykin, Asymptotic properties of Dedekind zeta functions in families of number

fields, Journal de Théorie des Nombres de Bordeaux,  (), no. , ––.
We are grateful to Universitе́ Bordeaux for granting us permission to use the offprint

of the paper.
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almost normal if there exists a tower of extensions K = Kn ⊇ Kn−1…

…⊇K1⊇K0=Q such that Ki/Ki−1 is normal for all i.

Consider a family of pairwise non-isomorphic number fields {Ki}.

Definition . If the limits

φα = lim
i→∞

Φα(Ki)

gKi

, α ∈ {R,C, 2, 3, 4, 5, 7, 9, … }

exist for each α then the family {Ki} is called asymptotically exact. It is

asymptotically good if there exists φα 6=0 and asymptotically bad other-

wise. The numbers φα are called the Tsfasman––Vlădu̧t invariants of the

family {Ki}.

It is not difficult to check (see [, Lemma .]) that the condition

nK/ log |DK | → 0 from the Brauer––Siegel theorem is equivalent to the

fact that the corresponding family is asymptotically bad. One can prove

that any family contains an asymptotically exact subfamily and that an

infinite tower of number fields is always asymptotically exact (see [,

Lemma . and Lemma .]).

Now we can formulate the Tsfasman––Vlădu̧t theorem proven in [,

Theorem .] in the asymptotically good case and in [, Theorem ] in

the asymptotically bad one.

Theorem . For an asymptotically exact family {Ki} we have

lim
i→∞

log(hKi
RKi

)

gKi

= 1+
∑
q

φq log
q

q−1
−φR log 2−φC log 2π, (.)

provided either all Ki are almost normal over Q or the Generalized Rie-

mann Hypothesis (GRH) holds for zeta functions of the fields Ki.

To generalize this theorem still further we will have to use the con-

cept of limit zeta functions from [].

Definition . The limit zeta function of an asymptotically exact fam-

ily of number fields {Ki} is defined as

ζ{Ki}
(s) =

∏
q

(1− q−s)−φq .

Theorem C from [] gives us the convergence of the above infinite

product for Re s¾1. Let cK =Ress=1ζK (s) be the residue of the Dedekind

zeta function of the field K at s= 1. Using the residue formula (see [,

Chapter VIII, Theorem ])

cK =
2ΦR(K)(2π)ΦC(K)hK RK

wK

p
|DK |
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(here wK is the number of roots of unity in K) and the estimate wK=O(n2
K

)

(see [, p. ]) one can see that the question about the behaviour of

the ratio from the Brauer––Siegel theorem is immediately reduced to the

corresponding question for cK .

The formula (.) can be rewritten as lim
i→∞

logcKi

gKi

= logζ{Ki}
(1). Fur-

thermore, Tsfasman and Vlădu̧t prove in [, Proposition .] that for

Re s>1 the equality lim
i→∞

logζKi
(s)

gKi

= logζ{Ki}
(s) holds.

Our main goal is to investigate the question of the validity of the

above equality for Re s< 1. We work in the number field case, for the

function field case see [], where the same problem was treated in a

much broader context.

The case s=1 is in a sense equivalent to the Brauer––Siegel theorem

so current techniques does not allow to treat it in full generality without

the assumption of GRH. From now on we will assume that GRH holds

for Dedekind zeta functions of the fields under consideration. Assuming

GRH, Tsfasman and Vlădu̧t proved ([, Corollary from Theorem A]) that

the infinite product for ζ{Ki}
(s) is absolutely convergent for Re s¾

1
2

. We

can now formulate our main results.

Theorem . Assuming GRH, for an asymptotically exact family of

number fields {Ki} for Re s>
1

2
we have

lim
i→∞

log((s−1)ζKi
(s))

gKi

= logζ{Ki}
(s).

The convergence is uniform on compact subsets of the half-plane
¦

s |Re s>

>
1

2

©
.

The result for s=
1
2

is considerably weaker and we can only prove

the following upper bound:

Theorem . Let ρKi
be the first non-zero coefficient in the Taylor se-

ries expansion of ζKi
(s) at s=

1
2

, i. e.

ζKi
(s) = ρKi

�
s− 1

2

�rKi
+ o

��
s− 1

2

�rKi
�

.

Then, assuming GRH, for any asymptotically exact family of number fields

{Ki} the following inequality holds:

lim sup
i→∞

log |ρKi
|

gKi

¶ logζ{Ki }

�
1
2

�
. (.)
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The question whether the equality holds in Theorem  is rather deli-

cate. It is related to the so called low-lying zeroes of zeta functions, that

is the zeroes of ζK (s) having small imaginary part compared to gK . We

doubt that the equality lim
i→∞

log |ρKi
|

gKi

=logζ{Ki}

�
1
2

�
holds for any asymptot-

ically exact family {Ki} since the behaviour of low-lying zeroes is known to

be rather random. Nevertheless, it might hold for “most” families (what-

ever it might mean). A more thorough discussion of this question in a

slightly different situation (low-lying zeroes of L-functions of modular

forms on SL2(R)) can be found in [].

To illustrate how hard the problem may be, let us remark that Iwaniec

and Sarnak studied a similar question for the central values of L-functions

of Dirichlet characters [] and modular forms []. They manage to prove

that there exists a positive proportion of Dirichlet characters (modular

forms) for which the logarithms of the central values of the correspond-

ing L-functions divided by the logarithms of the analytic conductors tend

to zero. The techniques of the evaluation of mollified moments used

in these papers are rather involved. We also note that, to our knowl-

edge, there has been no investigation of low-lying zeroes of L-functions

of growing degree. It seems that the analogous problem in the function

field has neither been very well studied.

Let us formulate a corollary of the Theorem . We will need the

following definition:

Definition . The Euler––Kronecker constant of a number field K is

defined as γK =
c0(K)

c−1(K)
, where ζK (s)=c−1(K)(s−1)−1

+c0(K)+O(s−1).

Ihara made an extensive study of the Euler––Kronecker constant in

[]. In particular, he obtained an asymptotic formula for the behaviour of

γ in families of curves over finite fields. As a corollary of Theorem , we

prove the following analogue of Ihara’s result in the number field case:

Corollary . Assuming GRH, for any asymptotically exact family of

number fields {Ki} we have

lim
i→∞

γKi

gKi

= −
∑
q

φq

log q

q−1
.

This result was formulated in [] without the assumption of the

Riemann hypothesis. Unfortunately, the proof given there is flawed. It

uses an unjustified change of limits in the summation over prime powers

and the limit taken over the family {Ki}. Thus, the question about the

validity of this equality without the assumption of GRH is still open.
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It would be interesting to have a result of this type at least under a

certain normality condition on our family {Ki}. Even the study of abelian

extensions is not uninteresting in this setting.

2. Proofs of the main results

Proof of Theorem . The statement of the theorem is known for

Re s>1 (see [, Proposition .]) thus we can freely assume that Re s<2.

We will use the following well known result [, Proposition .]

which can be proven using Hadamard’s factorization theorem.

Proposition . (1) For −1
2
¶σ¶2, s=σ+ it we have

ζ′
K

(s)

ζK (s)
+

1
s
+

1
s−1

−
∑

|s−ρ|<1

1
s−ρ = O(gK ),

where ρ runs through all non-trivial zeroes of ζK (s) and the constant in O

is absolute.

(2) The number m(T , K) of zeroes ρ = β + γi of ζK (s) such that

|γ− T |¶ 1 satisfies m(T , K)< C(gK + nK log(|T |+ 4)) with an absolute

constant C.

Now, applying this proposition, we see that for fixed T >0, ǫ>0 and

any s∈DT,ǫ={s∈C | | Im s|¶T , ǫ+
1
2
¶Re s¶2} we have

ζ′
K

(s)

ζK (s)
+

1

s−1
=

∑
|s−ρ|<ǫ

1

s−ρ +OT ,ǫ(gK ), (.)

for by Minkowski’s theorem [, Chapter V, Theorem ] nK <CgK with an

absolute constant C.

If we assume GRH, the sum over zeroes on the right hand side of

(.) disappears. Integrating, we finally get that in DT ,ǫ

log(ζK (s)(s−1))

gK
= OT ,ǫ(1)

Now, we can use the so called Vitali theorem [, .]:

Proposition . Let fn(s) be a sequence of functions holomorphic in a

domain D. Assume that for some M ∈R we have | fn(s)|<M for any n and

s∈D. Let also fn(s) tend to a limit at a set of points having a limit point in

D. Then the sequence fn(s) tends to a holomorphic function in D uniformly

on any closed disk contained in D.

It suffices to notice that the convergence of logζKi
(s)/gKi

to ζ{Ki}
(s)

is known for Re s> 1 by [, Proposition .]. So, applying the above
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theorem and using the fact that under GRH ζ{Ki}
(s) is holomorphic for

Re s¾
1

2
[, corollary from Theorem A] we get the required result.

Proof of Theorem . Denote gk= gKk
. Let us write

ζKk
(s) = ck

�
s− 1

2

�rk

Fk(s),

where Fk(s) is an analytic function in the neighbourhood of s=
1
2

such

that Fk

�
1
2

�
=1. Let us put s=

1
2
+θ , where θ >0 is a small positive real

number. We have

logζKk
( 1

2
+θ)

gk
=

log ck

gk
+ rk

logθ

gk
+

log Fk( 1

2
+θ)

gk
.

To prove the theorem we will construct a sequence θk such that

(1)
1

gk
logζKk

�
1

2
+θk

�
→ logζ{Kk}

�
1

2

�
;

(2)
rk

gk
logθk→0;

(3) lim inf
1
gk

log Fk

�
1
2
+θk

�
¾0.

For each natural number N we choose θ (N) a decreasing sequence

such that ���ζ{Kk}

�
1
2

�
−ζ{Kk}

�
1
2
+θ (N)

���� < 1
2N

.

This is possible since ζ{Kk}(s) is continuous for Re s¾
1

2
by [, corollary

from Theorem A]. Next, we choose a sequence k′(N) with the property:
��� 1

gk
logζKk

�
1

2
+θ

�
− logζ{Kk}

�
1

2
+θ

���� < 1

2N

for any θ ∈ [θ (N+1), θ (N)] and any k¾ k′(N). This is possible by The-

orem . Then we choose k′′(N) such that

−rk logθ(N+1)

gk
¶
θ(N)

N

for any k¾ k′′(N), which can be done thanks to the following proposition

(c.f. [, Proposition .]):

Proposition . Assume that GRH holds for ζK (s). Then

ord
s= 1

2

ζK (s) <
C log 3|DK |

log log 3|DK |

the constant C being absolute.
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Finally, we choose an increasing sequence k(N) such that k(N)¾

¾max(k′(N), k′′(N)) for any N .

Now, if we define N = N(k) by the inequality k(N)¶ k¶ k(N + 1)

and let θk=θ (N(k)), then from the conditions imposed on θk we automat-

ically get (1) and (2). The delicate point is (3). We will use Hadamard’s

product formula [, p. ]:

log |DK | = ΦR(K)(logπ−ψ(s/2))+

+2ΦC(K)(log(2π)−ψ(s))− 2
s
− 2

s−1
+2

∑
ρ

′ 1
s−ρ −2

ζ′
K

(s)

ζK (s)
,

where ψ(s) = Γ′(s)/Γ(s) is the logarithmic derivative of the gamma

function. In the first sum ρ runs over the zeroes of ζK (s) in the critical

strip and
∑′

means that ρ and ρ̄ are to be grouped together. This can

be rewritten as

1
gk

�
logζk

�
1
2
+θ

�
− rk logθ

�′
= −1+

ΦR(Kk)

2gk

�
logπ−ψ

�
1
4
+
θ
2

��
+

+
ΦC(Kk)

gk

�
log 2π−ψ

�
1
2
+θ

��
+

8θ

(1−4θ 2)gk

+
∑

ρ 6=1/2

′ 1

(1/2+θ −ρ)gk

.

(the term rk logθ comes from the contribution of zeroes at s=
1
2

). One

notices that all the terms on the right hand side except for −1 and
8θ

(1−4θ 2)gk

are positive. Thus, we see that
1

gk

�
log Fk

�
1

2
+ θ

��′
¾ C for

any small enough θ , where C is an absolute constant. From this and

from the fact that Fk

�
1
2

�
=1 we deduce that

1
gk

log Fk

�
1
2
+θk

�
¾ Cθk → 0.

This proves (3) as well as the theorem.

Proof of the Corollary . It suffices to take the values at s= 1 of

the derivatives of both sides of the equality in Theorem . This is possible

since the convergence is uniform for Re s>
1
2

.
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Jacobians among abelian threefolds:

a formula of Klein and a question of Serre

(with G. Lachaud and C. Ritzenthaler)

Abstract. In this paper we give a criterion when an indecompos-

able principally polarized abelian threefold (A, a) defined over a field

k ⊂C is a Jacobian over k. More precisely, (A, a) is a Jacobian over

k if and only if the value of a certain geometric Siegel modular form

χ18(A, a) is a square over k. This answers a question of J.-P. Serre.

1. Introduction

Let k be an algebraically closed field and let g ¾ 1 be an integer.

If X is a (nonsingular, irreducible, projective) curve of genus g over k,

Torelli’s theorem states that the map X 7→ (Jac X , j), associating to X

its Jacobian together with the canonical polarization j, is injective. The

determination of the image of this map is a long time studied question.

When g = 3, the moduli space Ag of principally polarized abelian

varieties of dimension g and the moduli space Mg of nonsingular alge-

braic curves of genus g are both of dimension g(g+ 1)/2= 3g− 3= 6.

According to Hoyt [] and Oort and Ueno [], the image of M3 is exactly

the space of indecomposable principally polarized abelian threefolds.

Moreover, if k =C Igusa [] characterized the locus of decomposable

abelian threefolds and that of hyperelliptic Jacobians, making use of two

particular modular forms Σ140 and χ18 on the Siegel upper half space of

degree 3. A similar characterization also exists in case g=2 (c. f. []).

Assume now that k is any field and g¾ 1. J.-P. Serre noticed in []

that a precise form of Torelli’s theorem reveals a mysterious obstruction

for a geometric Jacobian to be a Jacobian over k. More precisely, he

proved the following:

Theorem . Let (A, a) be a principally polarized abelian variety of

dimension g¾1 over k, and assume that (A, a) is isomorphic over ¯̄k to the

G. Lachaud, C. Ritzenthaler, A. I. Zykin, Jacobians among abelian threefolds: a formula

of Klein and a question of Serre, Doklady Mathematics,  (), no. , ––.



 Jacobians among abelian threefolds: a formula of Klein and a question of Serre

Jacobian of a curve X0 of genus g defined over ¯̄k. The following alternative

holds:

1) If X0 is hyperelliptic, there is a curve X/k isomorphic to X0 over ¯̄k

such that (A, a) is k-isomorphic to (Jac X , j).

2) If X0 is not hyperelliptic, there is a curve X/k isomorphic to X0

over ¯̄k, and a quadratic character

ǫ : Gal(ksep/k)→ {±1}

such that the twisted abelian variety (A, a)ǫ is k-isomorphic to (Jac X , j).

The character ǫ is trivial if and only if (A, a) is k-isomorphic to a Jacobian.

Thus, only case ) occurs if g = 1 or g = 2, with all curves being

elliptic or hyperelliptic. In this article we completely resolve for fields of

characteristic zero the first previously unknown case g=3.

Let there be given an indecomposable principally polarized abelian

threefold (A, a) defined over k. In a letter to J. Top [], J.-P. Serre asked

a twofold question:

• How to decide, knowing only (A, a), that X is hyperelliptic?

• If X is not hyperelliptic, how to compute the quadratic character ǫ?

Assume that k⊂C. The first question can easily be answered using

the modular forms Σ140 and χ18. As for the second question, roughly

speaking, Serre suggested that ǫ is trivial if and only if χ18 is a square

in k× (see Theorem  for a more precise formulation). This assertion was

motivated by a formula of Klein [] relating the modular form χ18 (in the

notation of Igusa) to squares of discriminants of plane quartics, which

more or less gives the ‘only if’ part of the claim. In [], two of the au-

thors justified Serre’s assertion for a particular three dimensional family

of abelian varieties and in particular determined the absolute constant

involved in Klein’s formula.

In this article we justify Serre’s assertion for any abelian threefold,

thus giving an algorithm which allows to determine whether a given

principally polarized abelian threefold over k is a Jacobian over k. In

order to do so, we start by taking a broader point of view, valid for

any g>1.

1) We look at the action of ¯̄k-isomorphisms on Siegel modular forms

defined over k and we define invariants of k-isomorphism classes of

abelian varieties over k.

2) We link Siegel modular forms, Teichmüller modular forms and

invariants of plane curves.
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Once these two goals are achieved, Serre’s assertion can be rephrased

as the following strategy:

• use ) to prove that a certain Siegel modular form f is a suitable n-th

power with n>1 on the Jacobian locus;

• use ) to distinguish between Jacobians and their twists. Indeed, the

action of a twist on f may change its value by a non n-th power and

then, according to ) of Theorem , we have a criterion to distinguish

Jacobians.

For g= 3, Klein’s formula shows that the form χ18 is a square on

the Jacobian locus and that this is enough to characterize this locus. The

relevance of Klein’s formula in this problem was one of Serre’s insights.

We would like to point out that we do not actually need the full strength

of Klein’s formula to work out our strategy. One can use instead a for-

mula due to Ichikawa relating χ18 to the square of a Teichmüller mod-

ular form, denoted µ3,9. However we think that the connection between

Siegel modular forms and invariants is interesting enough on its own,

besides the fact that it gives a new rigorous proof of Klein’s formula.

2. Main theorems

Let Hg =
�
τ∈Mg(C) | tτ=τ, Imτ>0

	
be the Siegel upper half

space of genus g.

We recall the definition of theta functions with (entire) characteristics

[ǫ] =

�
ǫ1

ǫ2

�
∈ Zg⊕Zg,

following []. The (classical) theta function is given, for τ ∈ Hg and

z∈Cg, by

θ

�
ǫ1

ǫ2

�
(z, τ) =

∑
n∈Zg

e2πi((n+ǫ1/2)τ(n+ǫ1/2)+2(n+ǫ1/2)(z+ǫ2/2)).

The Thetanullwerte are the values at z= 0 of these functions, and we

write

θ [ǫ](τ) = θ

�
ǫ1

ǫ2

�
(τ) = θ

�
ǫ1

ǫ2

�
(0, τ).

Recall that a characteristic is even if ǫ1 · ǫ2 ≡ 0 (mod 2) and odd other-

wise. Let Sg be the set of even characteristics with coefficients in {0, 1}.

For g¾2, we put h= |Sg|/2=2g−2(2g
+1) and

eχh(τ) =
∏
ǫ∈Sg

θ [ǫ](τ).



 Jacobians among abelian threefolds: a formula of Klein and a question of Serre

Denote by eΣ140 the modular form defined by the thirty-fifth elemen-

tary symmetric function of the eighth powers of the even Thetanullwerte.

Recall that a principally polarized abelian variety (A, a) is decom-

posable if it is a product of principally polarized abelian varieties of lower

dimensions, and it is indecomposable otherwise.

Let k⊂C be a field and let g= 3. Consider a principally polarized

abelian threefold (A, a) defined over k. Let ω1,ω2,ω3 be any basis of

the space of differential forms Ω1
k
[A]=H0(A,Ω1

A
) and let γ1, …, γ6 be a

symplectic basis (for the polarization a) of H1(A, Z), in such a way that

Ω = [Ω1 Ω2] =





Í

γ1

ω1 · · ·
Í

γ6

ω1

...
...

Í

γ1

ω3 · · ·
Í

γ6

ω3





is a period matrix of (A, a). Put τ=Ω−1
2 Ω1∈H3.

We have the following theorem which allows us to determine whether

a given abelian threefold defined over k is k-isomorphic to a Jacobian of

a curve defined over the same field. This settles the question of Serre

recalled in the introduction.

Theorem . 1) If eΣ140(τ)= 0 and eχ18(τ)= 0 then (A, a) is decom-

posable over k̄. In particular it is not a Jacobian.

2) If eΣ140(τ) 6=0 and eχ18(τ)=0 then there exists a hyperelliptic curve

X/k such that (Jac X , j)≃ (A, a).

3) If eχ18(τ) 6=0 then (A, a) is isomorphic to a Jacobian if and only if

−χ18(A,ω1∧ω2∧ω3) = (2π)54 eχ18(τ)

det(Ω2)18

is a square in k.

Corollary . In the notation of Theorem , the quadratic character ǫ

of Gal(ksep/k) introduced in Theorem  is given by ǫ(σ)=d/dσ, where

d =

√√
(2π)54

eχ18(τ)

det(Ω2)18 ,

with an arbitrary choice of the square root.

Our proof of the theorem is based on the so called Klein’s formula

which has an interest in itself. To formulate this result we have to intro-

duce yet another notation.
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Let F be a homogeneous polynomial of degree  in  variables x1,

x2, x3 with coefficients from the field k and let CF be the corresponding

quartic in P2. It is well known [, Chapter , Example .(a)] that up

to a sign there exists a unique polynomial Disc F in coefficients of F,

irreducible over Z, such that Disc F=0 if and only if CF is singular.

Assume that CF is non-singular. We recall the classical way to write

down an explicit k-basis of Ω1[CF ]=H0(CF ,Ω1) (see [, p. ]). Let

η1 =
f (x2dx3− x3dx2)

∂F/∂x1

, η2 =
f (x3dx1− x1dx3)

∂F/∂x2

, η3 =
f (x1dx2− x2dx1)

∂F/∂x3

,

where f is a linear polynomial in x1, x2, x3. The forms ηi glue together

and define a regular differential form η f (F)∈Ω1[CF ]. Now, denote by

η1, η2, η3 the sequence of sections obtained by substituting x1, x2, x3 for

f in η f .

Let γ1, …, γ6 be a symplectic basis of H1(CF , Z) for the intersection

pairing. Let

Ω = [Ω1 Ω2] =





Í

γ1

η1 · · ·
Í

γ6

η1

...
...

Í

γ1

η3 · · ·
Í

γ6

η3





be a period matrix of Jac(C) and let τ=Ω−1
2
Ω1∈H3.

Our second main result is the following one:

Theorem  (Klein’s formula). In the above notation we have

Disc(F)2
=

1

228 (2π)54 eχ18(τ)

det(Ω2)18 .
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Jacobians among Abelian threefolds:

a formula of Klein and a question of Serre

(with G. Lachaud and C. Ritzenthaler)

Abstract. Let (A, a) be an indecomposable principally polarized

abelian threefold defined over a field k⊂C. Using a certain geometric

Siegel modular form χ18 on the corresponding moduli space, we prove

that (A, a) is a Jacobian over k if and only if χ18(A, a) is a square over k.

This answers a question of J.-P. Serre. Then, via a natural isomorphism

between invariants of ternary quartics and Teichmüller modular forms

of genus 3, we obtain a simple proof of Klein formula, which asserts

that χ18(Jac C, j) is equal to the square of the discriminant of C.

Introduction

Let A3 be the moduli stack of principally polarized abelian schemes

(A, a) of relative dimension 3 and M3 be the moduli stack of smooth

and proper curves of genus 3. The first aim of this article is to an-

swer the following question of Serre []: If k is a subfield of C, and

if (A, a) ∈ A3 ⊗ k, under what conditions is it isomorphic over k to a

polarized Jacobian? If k = ¯̄k, this is the case if and only if (A, a) is

indecomposable, according to Hoyt [] and Oort and Ueno []. We

henceforth assume (A, a) indecomposable, and isomorphic over ¯̄k to the

principally polarized Jacobian (Jac C, j) of a curve C/¯̄k of genus 3. For

a general field k⊂C, the answer is given by a particular Siegel modular

form χ18 of genus 3. This form is actually defined up to a multiplicative

constant by the product of the 36 Thetanullwerte with even charac-

teristics. Our main result (Th. ..) is the following criterion: (A, a)

is isomorphic over k to (Jac C, j) if and only if χ18(A, a) is a square

over k. This was suggested by Serre in [] and proved in [] by the first

two authors for a 3-dimensional family of abelian varieties. This square

appears due to the following fact: by taking the inverse image under the

Gilles Lachaud, Christophe Ritzenthaler, Alexey Zykin, Jacobians among abelian three-

folds: a formula of Klein and a question of Serre, Matematical Research Letters,  (),

no. , ––.
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Torelli morphism t : C 7→ (Jac C, j) (with j the canonical polarization),

we get an element t∗χ18 in the algebra of Teichmüller modular forms

over k, which turns out to be a square, according to Ichikawa [].

The equivalence is then obtained by the action of quadratic twists on

geometric Siegel modular forms.

The second part of the article uses a natural isomorphism between

the algebra of invariants on the space of ternary quartic forms with non

zero discriminant and the algebra of Teichmüller modular forms on the

space of non hyperelliptic curves of genus 3. Hence, the form t∗χ18, re-

stricted to nonsingular non hyperelliptic curves, can be interpreted as an

invariant and this provides a simple proof of a formula of Klein, which as-

serts that χ18(Jac C, j) is the square of the discriminant of C (Th. ..).

The original relevance of Klein’s formula for the above criterion was one

of Serre’s insights.

This article is organized in two sections. In § ., we review the neces-

sary elements from the theory of Siegel and Teichmüller modular forms,

then in § . we introduce the action of isomorphisms and see how the

action of twists is reflected on the values of modular forms, and we prove

our main result in § .. The second section deals with invariants: in § .,

we give a geometric description of invariants of ternary forms, and in

§ ., we prove Klein’s formula. Finally, in § . we discuss the reasons

behind the failure of a straightforward generalization of the theory in

higher dimensions.

We would like to thank J.-P. Serre and S. Meagher for fruitful discus-

sions, and Y. F. Bilu and X. Xarles for their help in § ..

1. Modular forms and abelian threefolds

1.1. Siegel and Teichmüller modular forms

References for the following results are [], [], [], []. Let g¾ 2

be an integer and Ag be the moduli stack of principally polarized abelian

schemes of relative dimension g. Let π : Vg→Ag be the universal abelian

scheme and π∗Ω
1
Vg/Ag

→Ag the rank g bundle, usually called Hodge bun-

dle, induced by the relative regular differential forms of degree one on

Vg over Ag. The relative canonical bundle over Ag is the line bundle

ω =

g∧
π∗Ω

1
Vg/Ag

.
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Let R be a commutative ring and h be a positive integer. A geometric Siegel

modular form of genus g and weight h over R is an element of the R-

module

Sg,h(R) = Γ(Ag⊗R,ω⊗h).

One proceeds similarly with curves. Let Mg denote the moduli stack of

smooth and proper curves of genus g. Let π : Cg→Mg be the universal

curve, and let λ be the invertible sheaf associated to the Hodge bundle

on Mg, namely

λ =

g∧
π∗Ω

1
Cg/Mg

.

A Teichmüller modular form of genus g and weight h over R is an element

of
Tg,h(R) = Γ(Mg⊗R, λ⊗h).

Assume now that R= k is a field. For a projective nonsingular variety X

defined over k, we denote by Ω1
k
[X]= H0(X ,Ω1

X
⊗ k) the finite dimen-

sional k-vector space of regular differential forms on X defined over k.

Let (A, a)∈Ag⊗ k be a principally polarized abelian variety of dimension

g defined over k (resp. C ∈Mg⊗ k a genus g curve defined over k). We

denote by

ωk[A] ≃
g∧
Ω

1
k
[A] (resp. λk[C] ≃

g∧
Ω

1
k
[C])

the k-vector space of sections of ω (resp. λ) over (A, a) (resp. C). For

f ∈Sg,h(k) (resp. f ∈Tg,h(k)), and ω a basis of ωk[A] (resp. λ a basis of

λk[C]), we put

f ((A, a),ω)= f (A, a)/ω⊗h ∈ k, (resp. f (C, λ)= f (C)/λ⊗h ∈ k). ()

In this way a modular form defines a rule which assigns the element

f ((A, a),ω) ∈ k (resp. f (C, λ)) to every such pair ((A, a),ω) (resp.

(C, λ)) which depends only on ¯̄k-isomorphism class of the pair. With

this definition, the following proposition holds, see for instance []:

Proposition ... The Torelli map t : Mg→Ag, associating to a curve

C its Jacobian Jac C with the canonical polarization j, satisfies t∗ω=λ,

and induces for any field k a linear map

t∗ : Sg,h(k) = Γ(Ag⊗ k,ω⊗h) −→ Tg,h(k) = Γ(Mg⊗ k, λ⊗h),

For any curve C/k of genus g and any f ∈ Sg,h(k), one has [t∗ f ](C)=

= t∗[ f (Jac C, j)], i. e. for any basis ω of ωk[Jac C],

f ((Jac C, j),ω) = [t∗ f ](C, λ) if t∗ω = λ. �
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Assume now that R= k=C. Let Rg,h(C) be the vector-space of analytic

Siegel modular forms of weight h on Hg = {τ∈Mg(C)t
��τ=τ, Imτ> 0},

consisting of complex holomorphic functions φ(τ) on Hg satisfying

φ(M .τ) = det(cτ+d)h ·φ(τ) if M =

�
a b

c d

�
∈ Sp2g(Z).

To a point τ∈Hg we associate the abelian variety Aτ=C
g/(Zg

+τZg)

with its natural principal polarization j. Since the tangent space to Aτ is

canonically isomorphic to Cg, dz1∧ · · ·∧dzg is a section of

ω⊗C ≃ OHg
⊗

g∧
(Cg).

Thus, it induces a map from Rg,h(C) to Sg,h(C). More precisely, the fol-

lowing result holds [, p. ]:

Proposition ... If f ∈Sg,h(C) and τ∈Hg, let

ef (τ) = (2iπ)−gh f (Aτ, j)/(dz1∧ · · ·∧dzg)⊗h

where (z1, …zg) is the canonical basis of Cg. The map f 7→ ef is an isomor-

phism Sg,h(C)
∼−→Rg,h(C).

In the sequel we shall need some specific Siegel modular forms. We

recall the definition of Thetanullwerte with characteristics

ǫ =

�
ǫ1

ǫ2

�
∈ {0, 1}

g⊕{0, 1}
g,

given, for τ∈Hg, by

θ [ǫ](τ) =
∑

n∈Zg

exp
�

iπ
�

n+
ǫ1

2

�
τt(n+ǫ1/2)+2iπ

�
n+

ǫ1

2

�t

(ǫ2/2)
�

.

Let Sg be the set of even characteristics, that is, ǫt
1
ǫ2 ≡ 0 (mod 2). For

g¾2 and τ∈Hg, we put h= |Sg|/2=2g−2(2g
+1) and

eχh(τ) =
(−1)gh/2

22g−1(2g−1)
·
∏
ǫ∈Sg

θ [ǫ](τ).

In [], Igusa proves that if g¾ 3, then eχh ∈Rg,h(C). Starting from the

analytic Siegel modular form eχh, we define, thanks to Prop. .., a geo-

metric Siegel modular form

χh(Aτ) = (2iπ)gh · eχh(τ)(dz1∧ · · ·∧dzg)⊗h ∈ Sg,h(C).

Ichikawa proved several important results on this modular form that we

summarize in the following proposition, see [, Prop. .] and []:
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Proposition ... The geometric Siegel modular form χh belongs to

Sg,h(Z). Moreover, there exists a Teichmüller modular form µh/2∈Tg,h/2(Z)

such that
t∗(χh) = (µh/2)2. ()

1.2. Action of isomorphisms

Let k be any field and φ : (A′, a′)→ (A, a) a ¯̄k-isomorphism of prin-

cipally polarized abelian varieties. Choose a basis (ω1, …,ωg) of Ω1
¯̄k
[A]

and put ω=ω1∧…∧ωg ∈ωk[A]. If γi=φ
∗(ωi), then (γ1, …, γg) is a

basis of Ω1
¯̄k[A′] and by invariance under ¯̄k-isomorphisms

f ((A, a),ω) = f ((A′, a′), γ) where γ = γ1∧…∧γg ∈ ω¯̄k[A′].

If (ω′
1
, …,ω′

g
) is another basis of Ω1

¯̄k[A′] and ω′ =ω′
1
∧… ∧ω′

g
, we

denote by Mφ ∈ GLg(¯̄k) the matrix of the basis (γi) in the basis (ω′
i
).

Then one proves easily:

Proposition ... In the above notation,

f ((A, a),ω) = det(Mφ)h · f ((A′, a′),ω′). �

First of all, from this formula applied to the action of −1, we deduce

that, if k is a field of characteristic different from 2, then Sg,h(k)={0} if

gh is odd. From now on we assume that gh is even and char k 6=2.

Corollary ... Let (A, a) be a principally polarized abelian variety

of dimension g defined over k and f ∈Sg,h(k). Let ω1, …,ωg be a basis of

Ω
1
k
[A], and let ω=ω1∧…∧ωg ∈ωk[A]. Then

f̄ (A, a) = f ((A, a),ω) mod× k×h ∈ k/k×h

does not depend on the choice of the basis of Ω1
k
[A]. In particular f̄ (A, a)

is an invariant of the k-isomorphism class of (A, a).

Corollary ... Assume g odd. Let f ∈ Sg,h(k) and φ : (A′, a′)→
→ (A, a) be a non trivial quadratic twist. There exists c∈ k \ k2 such that

f̄ (A, a)= ch/2 f̄ (A′, a′). Thus, if f̄ (A, a) 6=0 then f̄ (A, a) and f̄ (A′, a′) do

not belong to the same class in k×/k×h.

Proof. Assume that φ is given by a quadratic character ǫ of Gal(¯̄k/k).

Then

dσ = ǫ(σ)g ·d, where d = det(Mφ) ∈ ¯̄k, σ ∈ Gal(¯̄k/k).

Since g is odd, by our assumption, h is even. Moreover d2
=ǫ(σ)ddσ∈ k.

But d /∈ k since there exists σ such that ǫ(σ)=−1. Using Prop. .. we

find that
f ((A, a),ω) = (d2)h/2 f ((A′, a′),ω′).
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Since d2 is not a square in k, if f̄ (A, a) 6= 0 then f̄ (A, a) and f̄ (A′, a′)
belong to two different classes.

Let (A, a) be a principally polarized complex abelian variety of di-

mension g defined over k⊂C. The period matrix of (A, a) defined by a

basis ω1, …,ωg of Ω1
k
[A] and a symplectic basis γ1, …, γ2g of H1(A, Z)

for the polarization a, is the Riemann matrix

Ω = [Ω1 Ω2] =





Í

γ1

ω1 · · ·
Í

γ2g

ω1

...
...Í

γ1

ωg · · ·
Í

γ2g

ωg




.

One puts τ := Ω−1
2
Ω1 ∈H3 in such a way that (A, a) is C-isomorphic

to Aτ. If C is a complex curve of genus g, one uses the same notation

for the period matrix of C defined by a basis ω1, …,ωg of Ω1
k
[C], and a

symplectic basis γ1, …γ2g of H1(C, Z) for the intersection pairing. By the

canonical identifications

Ω
1[C] = Ω1[Jac C], H1(C, Z) = H1(Jac C, Z),

the period matrix of C is also the period matrix of (Jac C, j) defined

by the corresponding bases. Applying Prop. .. with the isomorphism

z 7→Ω−1
2

z, we get the following lemma.

Proposition ... In the above notation, let ω = ω1 ∧… ∧ ωg ∈
∈ωk[A]. Then

f ((A, a),ω) = (2iπ)gh
ef (τ)

detΩh
2

. �

1.3. Jacobian among abelian threefolds

Serre stated in [] and [] the following precise form of Torelli’s

theorem:

Theorem ... Let (A, a) be a principally polarized abelian variety of

dimension g¾1 over a field k, and assume that (A, a) is isomorphic over ¯̄k

to the Jacobian of a nonsingular curve C. Then C can be defined over k, and

(i) If C is hyperelliptic, there is an isomorphism, defined over k, from

(A, a) to (Jac C, j).

(ii) If C is not hyperelliptic, there exists a quadratic character

ǫ : Gal(ksep/k) → {±1}
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and an isomorphism, defined over k, from the twisted abelian variety

(A, a)ǫ to (Jac C, j). Hence, (A, a) is k-isomorphic to a Jacobian if and

only if ǫ is trivial.

We restrict to the case where k⊂C and we now give a formula for ǫ.

In order to do so, we need to recall some geometric results by Igusa.

Denote by eΣ140 the modular form defined by the thirty-fifth elemen-

tary symmetric function of the eighth power of the even Thetanullwerte.

In his beautiful paper [], Igusa proves the following result [loc. cit.,

Lem.  and ].

Theorem ... If τ∈H3, then:

(i) (Aτ, j) is decomposable if eχ18(τ)= eΣ140(τ)=0;

(ii) (Aτ, j) is a hyperelliptic Jacobian if eχ18(τ)=0 and eΣ140(τ) 6=0;

(iii) (Aτ, j) is a non hyperelliptic Jacobian if eχ18(τ) 6=0.

We are now able to prove our main result which can be seen as an

arithmetic analogue of Igusa’s result.

Theorem ... Let (A, a) be a principally polarized abelian threefold

defined over k⊂C. Let (ω1,ω2,ω3) be any basis ofΩ1
k
[A] and (γ1, …, γ6)

a symplectic basis of H1(A, Z) for the polarization a. Let Ω= [Ω1 Ω2] be

the period matrix defined by these bases, and τ=Ω−1
2
Ω1.

(i) If eΣ140(τ)=0 and eχ18(τ)=0 then (A, a) is decomposable over ¯̄k. In

particular it is not a Jacobian.

(ii) If eΣ140(τ) 6=0 and eχ18(τ)=0 then there exists a hyperelliptic curve

C/k such that (Jac C, j)≃ (A, a).

(iii) If eχ18(τ) 6=0 then (A, a) is isomorphic to a non hyperelliptic Jacobian

if and only if

χ18 := χ18((A, a),ω) = (2iπ)54 eχ18(τ)

detΩ18
2

is a square in k, with ω=ω1∧ω2∧ω3∈ωk[A].

Proof. Only the third point is new. Indeed, the first and second

points directly follow from Th. .. and Th. ... Suppose now that

(A, a) is isomorphic over k to the Jacobian of a non hyperelliptic genus

3 curve C/k. Using successively Prop. .. and Prop. .., we get

χ18((A, a),ω) = t∗(χ18)(C,λ) = µ9(C,λ)2 ∈ k×2,

with λ= t∗ω. Hence, the desired expression is a square in k×. Its ana-

lytic expression on the right hand side of (iii) is a direct application of

Prop. ...
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On the contrary, Cor. .. shows that if (A, a) is a quadratic twist of

a Jacobian (A′, a′) then there exists a non square c∈ k such that

χ̄18(A, a) = c9 · χ̄18(A′, a′).

As we have just proved that χ̄18(A′, a′) is a square in k×/k×18, this im-

plies that χ18((A, a),ω) is not.

Corollary ... In the notation of Th. .., the quadratic charac-

ter ǫ of Gal(¯̄k/k) introduced in Th. .. is given by ǫ(σ)= dσ/d, with

d=
p
χ18, and with an arbitrary choice of the square root.

2. Invariants and Klein’s formula

Let d> 0 be an integer. In this section k is an algebraically closed

field of characteristic coprime with d.

2.1. Geometric invariants for nonsingular plane curves

We first review some classical invariant theory. Let E be a vector

space of dimension n over k. The left regular representation r of GL(E)

on the vector space Xd=Symd(E∗) of forms of degree d on E is given by

r(u): F(x) 7→ (u · F)(x)= F(ux)

for u∈GL(E), F ∈Xd and x∈ E. If U is an open subset of Xd stable under

r, we still denote by r the left regular representation of GL(E) on the

k-algebra O (U) of regular functions on U , in such a way that

r(u): Φ(F) 7→ (u ·Φ)(F) = Φ(u · F),

if u∈GL(E), Φ∈O (U) and F ∈U . If h∈Z, we denote by Oh(U) the sub-

space, stable under r, of homogeneous elements of degree h. An element

Φ∈Oh(U) is an invariant of degree h on U if u ·Φ=Φ for every u∈SL(E),

and we denote by Invh(U) the subspace of invariants of degree h on U .

Hence, if Φ∈O (U), and if w and n are two integers such that hd= nw,

then Φ∈ Invh(U) if and only if

u ·Φ = (det u)wΦ for every u ∈ GL(E),

and we call w the weight of Φ. Let F ∈Xd, and denote by q1, …, qn the

partial derivatives of F. The discriminant of F is

Disc F = c−1
n,d

Res(q1, …, qn), with cn,d = d((d−1)n−(−1)n)/d,

where Res(q1, …, qn) is the multivariate resultant of the forms q1, …qn

[, p. ], the coefficient cn,d being chosen according to []. We refer
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to [] for a detailed study of the discriminant of a ternary form, and the

computation of the discriminant of a Ciani quartic.

From now on we assume dim E=n=3. The universal curve over Xd

is the variety

Yd =
�

(F, x) ∈ Xd×P2 | F(x) = 0
	

.

The nonsingular locus of Xd is the principal open set

X
0
d
= (Xd)Disc =

�
F ∈ Xd | Disc(F) 6= 0

	
.

If Y
0
d

is the universal curve over the nonsingular locus X
0
d
, the projection

is a smooth surjective k-morphism

π : Y
0
d
→ X

0
d

whose fibre over F is the non singular plane curve CF . If F ∈ X
0
d
(k),

we recall the usual way to write down explicitly the classical basis of

Ω
1
k
[CF ]=H0(CF ,Ω1

CF
⊗ k), see [, p. ]. Let

η(1)
=

f (x2dx3− x3dx2)

q1
, η(2)

=
f (x3dx1− x1dx3)

q2
,

η(3)
=

f (x1dx2− x2dx1)

q3
,

where q1, q2, q3 are the partial derivatives of F, and where f ∈Xd−3. The

forms η(i) glue together and define a regular differential form η f (F)∈
∈ Ω1

k
[CF ]. Since dimXd−3 = (d − 1)(d− 2)/2= g, the linear map f 7→

7→η f (F) defines an isomorphism

Xd−3

∼−→ Ω1
k
[CF ].

We denote η1, …, ηg the sequence of sections obtained by substituting for

f in η f the g members of the canonical basis of Xd−3, enumerated accord-

ing to the lexicographic order. Then η=η1∧…∧ηg is a section of

α =

g∧
π∗Ω

1

Y
0
d
/X0

d

,

the Hodge bundle on X
0
d
. The map u : x 7→ux induces an isomorphism

u : Cu·F
∼−→ CF

Hence, it has a natural action u∗ : Ω1
k
[CF ]→ Ω1

k
[Cu·F] on the differen-

tials and therefore, on the sections of αh, for h ∈ Z. More specifically,
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if s∈ Γ(X0
d
, α⊗h), one can write s=Φ ·η⊗h with Φ∈ O (X0

d
); for F ∈X

0
d
,

one has

u∗s(F) = Φ(F) · (u∗η(F))⊗h.

The proof of the following lemma is left to the reader.

Lemma ... For any u∈G and any F ∈X
0
d
, the section η∈Γ(X0

d
,α)

satisfies,

u∗η(F) = det(u)w0 ·η(u · F), with w0 =

�
d
3

�
=

dg

3
∈ N.

For any h ∈ Z, we denote by Γ(X0
d
,α⊗h)G the subspace of sections

s∈Γ(X0
d
,α⊗h) such that u∗s(F)= s(u · F) for every u∈G and F ∈X

0
d
.

Proposition ... Let h¾0 be an integer. The linear map

Φ 7→ ρ(Φ) = Φ ·η⊗h

is an isomorphism

ρ : Invgh(X0
d
)
∼−→ Γ(X0

d
, α⊗h)G.

Proof. Let Φ ∈ Invgh(X0
d
), s= ρ(Φ)= Φ · η⊗h, and w = dgh/3, the

weight of Φ. Then using Lem. ..,

u∗s(F) = Φ(F) · (u∗η(F))⊗h
= Φ(F) ·det(u)w0h ·η(u · F)⊗h

= det(u)wΦ(F) ·η(u · F)⊗h
= Φ(u · F) ·η(u · F)⊗h

= s(u · F).

Hence, ρ(Φ) ∈ Γ(X0
d
, λ⊗h)G. Conversely, the inverse of ρ is the map

s 7→ s/η⊗h, and this proves the proposition.

2.2. Modular forms as invariants

Let d>2 be an integer and g=
�

d−1
2

�
. Since the fibres of Y

0
d
→X

0
d

are nonsingular non hyperelliptic plane curves of genus g, by the univer-

sal property of Mg we get a morphism

p : X
0
g
→ Mg.

and p∗λ=α by construction. This induces a linear map

p∗ : Tg,h(k) −→ Γ(X0
d
,α⊗h).

Moreover, for u∈ G, since u : Cu·F → CF is an isomorphism, we get the

following commutative diagram

λ[CF ]
u∗ //

p∗

��

λ[Cu·F ]

p∗

��

α[F]
u∗ // α[u · F].
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For any f ∈Tg,h(k), the modular invariance of f means that

u∗ f (CF ) = f (Cu·F).

Then

u∗[(p∗ f )(F)] = u∗[p∗( f (CF ))] = p∗[u∗ f (CF )] =

= p∗[ f (Cu·F)] = (p∗ f )(u · F),

and this means that p∗ f ∈Γ(X0
d
,α⊗h)G. If g= 3 then p∗ is a linear iso-

morphism. Combining this result with Prop. .., we obtain:

Proposition ... For any integer h¾0, the linear map σ=ρ−1 ◦ p∗

is a homomorphism:

Tg,h(k) → Invgh(X0
d
)

such that

σ( f )(F) = f (CF , λ)

with λ= (p∗)−1η, for any F ∈X
0
d

and any section f ∈Tg,h(k). If g=3, then

σ is an isomorphism.

We finally make a link between invariants and analytic Siegel modu-

lar forms. Let F ∈ X 0
d

(C) and (η1, …, ηg) the basis of regular differentials

on CF defined in § .. Let (γ1, …γ2g) be a symplectic basis of H1(C, Z)

for the intersection pairing. Let Ω = [Ω1 Ω2] the period matrix of CF

defined by these bases, and τ=Ω−1
2
Ω1.

Corollary ... Let f ∈Sg,h(C) be a geometric Siegel modular form,

ef ∈Rg,h(C) the corresponding analytic modular form, and Φ=σ(t∗ f ) the

corresponding invariant. In the above notation,

Φ(F) = (2iπ)gh
ef (τ)

detΩh
2

.

Proof. Let λ= (p∗)−1(η) and ω= (t∗)−1(λ). From Prop. .. and

.., we deduce

Φ(F) = (t∗ f )(CF , λ) = f (Jac CF ,ω),

and Prop. .. give the result, since Ω is also the period matrix of Jac CF .

We are now ready to give a proof of the following result [, Eq. ,

p. ]:

Theorem .. (Klein’s formula). Let F ∈X
0
4
(C) and CF be the cor-

responding smooth plane quartic. Let (η1, η2, η3) be the classical basis of

Ω
1
C[CF ] and (γ1, …, γ6) be a symplectic basis of H1(CF , Z) for the inter-
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section pairing. Let Ω= [Ω1 Ω2] the period matrix of CF defined by these

bases, and τ=Ω−1
2
Ω1. Then

Disc(F)2
= (2π)54 eχ18(τ)

det(Ω2)18 .

Proof. Cor. .. shows that for any F ∈ X
0
4

the invariant I =

=σ ◦ t∗(χ18) satisfies

I(F) = (2iπ)54 eχ18(τ)

detΩ18
2

.

Moreover Th. .. (iii) shows that I(F) 6=0 for all F ∈X
0
4
. Since the dis-

criminant is an irreducible polynomial, as immediate consequence of

Hilbert’s Nullstellensatz we get that I = c Discn with c ∈C× a constant

and n∈N. Since I is an invariant of weight 54 and Disc an invariant of

weight 27, n=2. Finally, it is proven in [, Cor. .] that Klein’s formula

holds true for any Ciani quartic with c=1.

Remark ... Th. .. implies that

µ9(CF , λ) = ±Disc F.

This might be deduced from the definition of µ9, although it seems that

this fact was not observed before.

2.3. Beyond genus 3

First of all, note that an analogue of Klein’s formula has been derived

in the hyperelliptic case by Lockhart [] and also by Guàrdia []. Their

formula is a direct consequence of Thomae’s formula []. Now, it is

natural to try to extend the preceding results to the case g>3. For Klein’s

formula and g=4, Klein himself, in the footnote of p.  in [], gives

the amazing formula

eχ68(τ)

det(Ω2)68 = c ·∆(C)2 ·T(C)8. ()

Here τ=Ω−1
2
Ω1, with Ω= [Ω1 Ω2] a period matrix of a genus 4 non

hyperelliptic curve C given in P3 as an intersection of a quadric Q and

a cubic surface E. The elements ∆(C) and T(C) are defined in classical

invariant theory as, respectively, the discriminant of Q and the tact in-

variant of Q and E (see [, p. ]). No such formula seems to be known

in the non hyperelliptic case for g>4.

Let us now look at what happens when we try to apply Serre’s ap-

proach for g>3. To begin with, when g is even, we cannot use Cor. ..
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to distinguish between quadratic twists. Let us assume that g is odd.

Cor. .. shows that there exists c∈ k \ k2 such that

χ̄h(A′, a′) = ch/2 · χ̄h(A, a)

for a Jacobian (A, a) and a quadratic twist (A′, a′). What enabled us to

distinguish between the two when g=3 is that h/2=9 is odd. However

as soon as g>3, the 2-valuation of h/2 is g−3>0, so it is not enough

for χ̄h(A) to be a square in k to make a distinction between A and A′. It

must rather be a 2g−2-th power in k. It can be easily seen from the proof

of [, Th. ] that t∗(χh) does not admit a fourth root. According to [] or

[] this implies χ̄h(A, a) is not a 2g−2-th power in k for infinitely many

Jacobians (A, a) defined over number fields k. So we can no longer use

the modular form χh to characterize Jacobians over k.
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On logarithmic derivatives of zeta functions

in families of global fields

(with P. Lebacque)

The goal of this paper is to get a formula for the limit of logarithmic

derivatives of zeta functions in families of global fields (assuming GRH

in the number field case) with an explicit error term. This result is close

in spirit both to the explicit Brauer––Siegel and Mertens theorems from

[] as well as to the generalized Brauer––Siegel type theorems from a

paper by the first author. We also improve the error term in the explicit

Brauer––Siegel theorem from [], allowing its dependence on the family

of global fields under consideration.

Throughout the paper the constants involved in O and ≪ are abso-

lute and effective (and, in fact, not very large). Let K be a global field

that is a finite extension of Q or a finite extension of Fr(t), in the lat-

ter case K =Fr(X) for a smooth absolutely irreducible projective curve

over Fr, where Fr is the finite field with r elements. We will often use the

acronyms NF or FF for the statements proven in the number field and the

function field cases respectively. We shall often omit the index K in our

notation in cases when it creates no confusion.

For a number field K let nK and DK denote its degree and its discrimi-

nant respectively. Let gK be the genus of a function field, that is the genus

of the corresponding smooth projective curve and let gK = log
p
|DK | in

the number field case. Let P (K) be the set of (finite) places of K and let

Φq=Φq(K) be the number of places of norm q in K, i. e.

Φq = |{p ∈ P (K) | Np = q}|.
In the number field case we denote by ΦR= r1 and ΦC= r2 the number of

real and (pairs of) complex places of K respectively.

Recall that the zeta function of a global field K may be defined as

ζK (s) =
∏

q

(1− q−s)−Φq ,

P. Lebacque, A. I. Zykin, On logarithmic derivatives of zeta functions in families of global

fields, Doklady Mathematics,  (), no. , ––.
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where the product runs over all prime powers q. We denote by

ZK (s) = −
∑
q

Φq log q

qs−1

its logarithmic derivative. One knows that ζK (s) can be analytically con-

tinued to the whole complex plane and satisfies a functional equation

relating ζK (s) and ζK (1− s). Furthermore, in the function field case

ζK (s) is a rational function of t= r−s. Moreover,

ζK (s) =

g∏
j=1

(π j t−1)(π̄ j t−1)

(1− t)(1− rt)
,

and |π j |=
p

r (the Riemann hypothesis). For the rest of the paper we

will assume that the Generalized Riemann Hypothesis is true for zeta

functions of number fields, that is all the non-trivial zeroes of ζK (s) are

on the line Re s=
1
2

.

Here are our main results:

Theorem  (FF). For any function field K, any integer N ¾ 10 and

any ǫ=ǫ0+ iǫ1 such that ǫ0=Reǫ>0 we have:

N∑
f=1

fΦr f

r

�
1
2
+ǫ

�
f −1

+
1

log r
· ZK

�
1
2
+ǫ

�
+

1

r−
1
2
+ǫ−1

=

= O
� gK

rǫ0 N

�
1+

1
ǫ0

��
+O

�
r

N

2

�
.

Theorem  (NF, GRH). For a number field K, an integer N¾10 and

any ǫ=ǫ0+ iǫ1 such that ǫ0=Reǫ>0 we have:

∑
q¶N

Φq log q

q
1
2
+ǫ−1

+ ZK

�
1
2
+ǫ

�
+

1

ǫ− 1

2

=

= O
� |ǫ|4+ |ǫ|

ǫ2
0

(gK +n log N)
log2 N

Nǫ0

�
+O

�p
N
�
.

Let us explain a little bit the meaning of these theorems. It was

known before (see below) that the identities (without the error terms)

of the theorems are true in the asymptotic sense (when N=∞ and g=∞

for families of global fields). Our theorems give the “finite level” versions

of these results. They allow to estimate how well the cutoffs of the series

for ZK (s) approximate it away from the domain of convergence of this

series (which is Re s>1) when we vary K.
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The proofs of these theorems are based on the Weil explicit formula.

However, in the number field case the analytical difficulties are rather

considerable, so the explicit formula has to be applied three times with

different choices of test functions. We note that in both cases we also

obtain the new proofs of the basic inequalities from [] and [] (c.f.

formulae () and () below).

Our next results concern families of global fields {Ki} with growing

genus gi= g(Ki). Recall ([],[]) that a family of global fields is called

asymptotically exact if the limits

φα = φα({Ki}) = lim
i→∞

Φα(Ki)

gi

exist for each α which is a power of r in the function field case and each

prime power and α=R and α=C in the number field case. The num-

bers φα are called the Tsfasman––Vlădu̧t invariants of the family {Ki}.

From now on we assume that all our families are asymptotically exact.

We introduce the limit zeta function of a family {Ki} as

ζ{Ki }
(s) =

∏
q

(1− q−s)−φq .

We will also denote by Z{Ki}
(s)=−

∑
q

φq log q

qs−1
its logarithmic derivative.

The basic inequality (c.f. [] and []) can be formulated as
∞∑

f=1

fφr f

r
f

2 −1
¶ 1 ()

in the function field case and as
∑
q

φq log q
p

q−1
+φR

�
log(2

p
2π)+

π
4
+
γ

2

�
+φC

�
log(8π)+γ

�
¶ 1 ()

in the number field case. It follows from the inequality that both the

product and the sum converge absolutely for Re s¾
1
2

and thus define

analytic functions for Re s>
1
2

.

Let us first formulate a corollary of Theorems  and .

Corollary . For an asymptotically exact family of global fields {Ki},

an integer N¾10 and any ǫ=ǫ0+ iǫ1 such that ǫ0=Reǫ>0 the follow-

ing holds:

1) in the function field case:

N∑
f=1

fφr f

r

�
1
2
+ǫ

�
f −1

+
1

log r
· Z{Ki}

�
1
2
+ǫ

�
= O

�
1

rǫ0 N

�
1+

1
ǫ0

��
;
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2) in the number field case with the assumption of GRH:

∑
q¶N

φq log q

q
1
2
+ǫ−1

+ Z{Ki}

�
1
2
+ǫ

�
= O

� (|ǫ|4+ |ǫ|) log3 N

ǫ2
0 Nǫ0

�
.

This corollary, in particular, implies the convergence of the loga-

rithmic derivatives of zeta functions of global fields to the logarithmic

derivative of the limit zeta function for Re s>
1
2

. This result (without

an explicit error term but with a much easier proof) has been recently

obtained in paper by the first of the authors in the function field case.

Our next result concerns the behaviour of Z{Ki}
(s) at s=

1

2
.

Theorem . For an asymptotically exact family of global fields {Ki}

there exists a number δ>0 depending on {Ki} such that:

1) in the function field case:

N∑
f=1

fφr f

r
f

2 −1
+

1

log r
· Z{Ki}

�
1
2

�
= O(r−δN);

2) in the number field case, assuming GRH, we have:

∑
q¶N

φq log q
p

q−1
+ Z{Ki}

�
1
2

�
= O(N−δ).

Let us formulate a corollary of this result which, in a sense, im-

proves the explicit Brauer––Siegel theorem from []. We denote by cKi
=

=Ress=1ζKi
(s) the residue of ζKi

(s) at s=1. We let κ=κ{Ki}
= lim

i→∞

logcKi

gi
.

One knows ([] and []) that for an asymptotically exact family this limit

exists and equals logζ{Ki}
(1) (we assume GRH in the number field case).

In fact, in the number field case it can be seen as a generalization of the

classical Brauer––Siegel theorem (cf. []).

Corollary . For an asymptotically exact family of global fields {Ki}

there exists a number δ>0 depending on {Ki} such that:

1) in the function field case:

N∑
f=1

φr f log
r f

r f −1
= κ+O

�
1

r

�
1
2
+δ

�
N

N

�
;

2) assuming GRH, in the number field case:

∑
q¶N

φq log
q

q−1
= κ+O

�
1

N
1
2
+δ log N

�
.
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On logarithmic derivatives of zeta functions

in families of global fields

(with P. Lebacque)

Abstract. We prove a formula for the limit of logarithmic deriva-

tives of zeta functions in families of global fields with an explicit error

term. This can be regarded as a rather far reaching generalization of

the explicit Brauer––Siegel theorem both for number fields and function

fields.

1. Introduction

The goal of this paper is to prove a formula for the limit of logarith-

mic derivatives of zeta functions in families of global fields (assuming

GRH in the number field case) with an explicit error term. This result

is close in spirit both to the explicit Brauer––Siegel and Mertens theo-

rems from [] and to the asymptotic theorem for Dedekind zeta functions

from []. We also improve the error term in the explicit Brauer––Siegel

theorem from [], allowing its dependence on the family of global fields

under consideration.

Throughout the paper the constants involved in O and ≪ are abso-

lute and effective (and, in fact, not very large). Let K be a global field

that is a finite extension of Q or a finite extension of Fr(t), in the lat-

ter case K =Fr(X) for a smooth absolutely irreducible projective curve

over Fr, where Fr is the finite field with r elements. We will often use the

acronyms NF or FF for the statements proven in the number field and the

function field cases respectively. We shall often omit the index K in our

notation in cases when it creates no confusion.

For a number field K let nK and DK denote its degree and its discrimi-

nant respectively. Let gK be the genus of a function field, that is the genus

of the corresponding smooth projective curve and let gK = log
p
|DK | in

Philippe Lebacque, Alexey Zykin, On logarithmic derivatives of zeta functions in families

of global fields, International Journal of Number Theory,  (), no. , ––.
We are grateful to World Scientific Publishing Company for granting us permission to

use the offprint of the paper.
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the number field case. Let P (K) be the set of (finite) places of K and let

Φq=Φq(K) be the number of places of norm q in K, i. e.

Φq = |{p ∈ P (K) | Np = q}|.
In the number field case we denote by ΦR= r1 and ΦC= r2 the number of

real and complex places of K respectively.

Recall that the zeta function of a global field K is defined as

ζK (s) =
∏

q

(1− q−s)−Φq ,

where the product runs over all prime powers q. We denote by

ZK (s) = −
∑
q

Φq log q

qs−1

its logarithmic derivative. One knows that ζK (s) can be analytically con-

tinued to the whole complex plane and satisfies a functional equation

relating ζK (s) and ζK (1− s). Furthermore, in the function field case

ζK (s) is a rational function of t= r−s. Moreover,

ζK (s) =

g∏
j=1

(π j t−1)(π̄ j t−1)

(1− t)(1− rt)
, (.)

and |π j |=
p

r (the Riemann hypothesis). For the rest of the paper we

will assume that the Generalized Riemann Hypothesis is true for zeta

functions of number fields, that is all the non-trivial zeroes of ζK (s) are

on the line Re s=
1

2
.

Here are our first main results:

Theorem . (FF). For any function field K, any integer N ¾10 and

any ǫ=ǫ0+ iǫ1 such that ǫ0=Reǫ>0 we have:

N∑
f=1

fΦr f

r
�

1
2
+ǫ

�
f −1

+
1

log r
· ZK

�
1
2
+ǫ

�
+

r
n
�

1
2
−ǫ

�

rǫ−
1
2 −1

= O
� gK

rǫ0 N

�
1+

1
ǫ0

��
.

Theorem . (NF, GRH). For a number field K, an integer N ¾ 10

and any ǫ=ǫ0+ iǫ1 such that ǫ0=Reǫ>0 we have:

∑
q¶N

Φq log q

q
1
2
+ǫ−1

+ ZK

�
1
2
+ǫ

�
+

�
N+

1
2

� 1
2
−ǫ

ǫ− 1
2

=

= O
� |ǫ|4+ |ǫ|

ǫ2
0

(g+n log N)
log2 N

Nǫ0

�
.
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Let us explain a little bit the meaning of these theorems. It was

known before (see [] and also below) that the identities (without the

error terms) of the theorems are true in the asymptotic sense (when

N =∞ and g=∞ for families of global fields). Our theorems give the

“finite level” versions of these results. They allow to estimate how well

the cutoffs of the series for ZK (s) approximate it away from the domain

of convergence of this series (which is Re s>1) when we vary K.

We give the proof of these theorems in Sections  and  respectively.

Both proofs are based on the Weil explicit formula. However, in the num-

ber field case the analytical difficulties are rather considerable, so the ex-

plicit formula has to be applied three times with different choices of test

functions. We note that, as indicated in the remarks in the corresponding

sections, in both cases we obtain the new proofs of the basic inequalities

from [] and [].

Our next results concern families of global fields {Ki} with growing

genus gi = g(Ki). Recall [, ] that a family of global fields is called

asymptotically exact if the limits

φα = φα({Ki}) = lim
i→∞

Φα(Ki)

gi

exist for each α which is a power of r in the function field case and each

prime power and α=R and α=C in the number field case. The numbers

φα are called the Tsfasman––Vlădu̧t invariants of the family {Ki}. From

now on we assume that all our families are asymptotically exact.

We introduce the limit zeta function of a family {Ki} as

ζ{Ki}
(s) =

∏
q

(1− q−s)−φq .

We will also denote by Z{Ki}
(s)=−

∑
q

φq log q

qs−1
its logarithmic derivative.

It follows from the basic inequality (cf. [] and [] or Sections  and

 of this paper) that both the product and the sum converge absolutely

for Re s¾
1
2

and thus define analytic functions for Re s>
1
2

.

Let us first formulate a corollary of Theorems . and ..

Corollary .. For an asymptotically exact family of global fields {Ki},

an integer N¾10 and any ǫ=ǫ0+ iǫ1 such that ǫ0=Reǫ>0 the follow-

ing holds:

1) in the function field case:
N∑

f=1

fφr f

r

�
1
2
+ǫ

�
f −1

+
1

log r
· Z{Ki}

�
1
2
+ǫ

�
= O

�
1

rǫ0 N

�
1+

1
ǫ0

��
;
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2) in the number field case with the assumption of GRH:

∑
q¶N

φq log q

q
1
2
+ǫ−1

+ Z{Ki}

�
1
2
+ǫ

�
= O

� (|ǫ|4+ |ǫ|) log3 N

ǫ2
0 Nǫ0

�
.

This corollary, in particular, implies the convergence of the loga-

rithmic derivatives of zeta functions of global fields to the logarithmic

derivative of the limit zeta function for Re s>
1
2

. This result (without

an explicit error term but with a much easier proof) has been recently

obtained in [].

Our next result concerns the behaviour of Z{Ki}
(s) at s=

1
2

.

Theorem .. For an asymptotically exact family of global fields {Ki}

there exists a number δ>0 depending on {Ki} such that:

1) in the function field case:

N∑
f=1

fφr f

r
f

2 −1
+

1

log r
· Z{Ki}

�
1
2

�
= O(r−δN);

2) in the number field case, assuming GRH, we have:

∑
q¶N

φq log q
p

q−1
+ Z{Ki}

�
1

2

�
= O(N−δ).

Let us formulate a corollary of this result which, in a sense, im-

proves the explicit Brauer––Siegel theorem from []. We denote by cKi
=

=Ress=1ζKi
(s) the residue of ζKi

(s) at s=1. We let κ=κ{Ki}
= lim

i→∞

logcKi

gi
.

One knows ([] and []) that for an asymptotically exact family this

limit exists and equals logζ{Ki}
(1) (we assume GRH in the number field

case). In fact, in the number field case it can be seen as a generalization

of the classical Brauer––Siegel theorem (cf. []).

Corollary .. For an asymptotically exact family of global fields {Ki}

there exists a number δ>0 depending on {Ki} such that:

1) in the function field case:

N∑
f=1

φr f log
r f

r f −1
= κ+O

�
1

r

�
1
2
+δ

�
N

N

�
;

2) assuming GRH, in the number field case:

∑
q¶N

φq log
q

q−1
= κ+O

�
1

N
1
2
+δ log N

�
.

We prove Theorem . and both of the Corollaries . and . in

the § .
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2. Proof of Theorem .

We will use the following analogue of Weil explicit formula for zeta

functions of function fields, see [] or [] (in the case of varieties over

finite fields) for a proof.

Theorem .. For a sequence v = (vn) such that
∞∑

n=1

vnr
n

2 is conver-

gent, the series
∞∑

n=1

vnr−
n

2

∑
m|n

mΦrm is also convergent and one has the fol-

lowing equality:

∞∑
n=1

vnr−
n

2

∑
f |n

fΦr f = ψv(r1/2)+ψv(r−1/2)−
g∑

j=1

�
ψv

� π jp
r

�
+ψv

� π̄ jp
r

��

where the π j , π̄ j are the inverse roots of the numerator of the zeta function

of K, g= gK and ψv(t)=
∞∑

n=1

vntn.

Let us take the test sequence vn= vn(N)=
1

rnǫ if n¶N and 0 other-

wise. Introducing it in the explicit formulae, we get

S0(N , ǫ) = S1(N , ǫ)+S2(N , ǫ)−S3(N , ǫ),

where

S0(N , ǫ) =
N∑

n=1

r
−n

�
1

2
+ǫ

�∑
f |n

fΦr f , S1(N , ǫ) =
N∑

n=1

r
n
�

1

2
−ǫ

�
,

S2(N , ǫ) =
N∑

n=1

r
−n

�
1

2
+ǫ

�
, S3(N , ǫ) =

g∑
j=1

N∑
n=1

r
−n

�
1

2
+ǫ

�
(πn

j
+ π̄n

j
).

Let us estimate each of the Si.

Calculation of S0:

Let us first change the summation order in S0:

S0(N , ǫ) =
N∑

n=1

r
−n

�
1

2
+ǫ

�∑
f |n

fΦr f =

N∑
f=1

fΦr f

[N/ f ]∑
m=1

1

r
fm

�
1
2
+ǫ

� .

Now

R0(N , ǫ) =
N∑

f=1

fΦr f
1

r
�

1
2
+ǫ

�
f −1

−S0(N , ǫ) =

=

N∑
f=1

fΦr f

�
1

r

�
1
2
+ǫ

�
f −1

−
[N/ f ]∑
m=1

r
− fm

�
1

2
+ǫ

��
=

N∑
f=1

fΦr f

∞∑
m=[N/ f ]+1

r
− fm

�
1

2
+ǫ

�
.
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Taking the absolute values, we can assume that ǫ is real. Summing

the geometric series, we obtain

0 ¶
N∑

f=1

fΦr f
1

r

�
1
2
+ǫ

�
f −1

−S0(N , ǫ) ¶
N∑

f=1

fΦr f r
−
�

1

2
+ǫ

�
[N/ f ] f 1

r

�
1
2
+ǫ

�
f −1

.

We now use the Weil inequality fΦr f ¶ r f
+1+2g

p
r f , and split the

above sum into two parts in the following way. For f > [N/2] we have

[N/ f ]=1 and for f ¶ [N/2] we use the inequality f [N/ f ]¾N− f .

|R0(N , ǫ)| ¶
N∑

f=1

�
1+ r f

+2g
p

r f
�

r
f
�

1
2
+ǫ

�
[N/ f ]

�
r

�
1
2
+ǫ

�
f −1

� ¶

¶ 8
[N/2]∑

f=1

r
�

1
2
−ǫ

�
f
+2g r− f ǫ

r
(N− f )

�
1
2
+ǫ

� +8
N∑

f>[N/2]

r
�

1
2
−ǫ

�
f
+2g r− f ǫ

r
f
�

1
2
+ǫ

� ¶

¶
8

r
N
�

1
2
+ǫ

�
[N/2]∑

f=1

(r f
+2 g r

f

2 )+8
∑

f>[N/2]

(r−2ǫ f
+2 g r

−
�

1

2
+2ǫ

�
f
) ¶

¶
8

r
N
�

1
2
+ǫ

�

�
r

N
2
+1− r

r−1
+2g

r
N
4
+

1
2 − r

1
2

r
1
2 −1

�
+

8r−ǫN

1− r−2ǫ +
16gr−

N
4
−ǫN

1− r−
1
2
−2ǫ
¶

¶
64

rǫN

�
2gr−

N

4 +
1

rǫ−1
+1

�
¶

128

rǫN

�
g r−

N

4 +
1+ǫ
ǫ

�
.

Calculation of S1:

S1(N , ǫ) = r
1

2
−ǫ · r

�
1
2
−ǫ

�
N −1

r
1
2
−ǫ−1

=
r

�
1
2
−ǫ

�
N −1

1− rǫ−
1
2

.

Calculation of S2:

0 ¶ |S2(N , ǫ)| ¶ 1− r
−
�

1
2
+ǫ0

�
N

r
1
2
+ǫ0 −1

¶ 4.

Calculation of S3:

R3(N , ǫ) = S3(N , ǫ)−
g∑

j=1

�
π j

r
1
2
+ǫ−π j

+
π̄ j

r
1
2
+ǫ− π̄ j

�
=

= −
g∑

j=1

∞∑
n=N+1

� π j

r
1
2
+ǫ

�n

+

� π̄ j

r
1
2
+ǫ

�n

.

The absolute value of the right hand side can be bounded using the fact

that |π j |¶ r
1

2 :

|R3(N , ǫ)| =
���

g∑
j=1

∞∑
n=N+1

� π j

r
1
2
+ǫ

�n
+

� π̄ j

r
1
2
+ǫ

�n
��� ¶ 2g

r−Nǫ0

rǫ0 −1
¶ 4g

r−Nǫ0

ǫ0
.
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From the expression (.) of ζK (s) as rational function in t= r−s we

can easily deduce the following formula for its logarithmic derivative:

1

log r
ZK

�
1

2
+ǫ

�
= − 1

r
1
2
+ǫ−1

− 1

r−
1
2
+ǫ−1

+

g∑
j=1

� π j

r
1
2
+ǫ−π j

+
π̄ j

r
1
2
+ǫ− π̄ j

�
.

Putting it all together we get the statement of the theorem. �

Remark .. Using our theorem we can easily reprove the basic in-

equality from []. We take a real ǫ<
1
4

, and remark that

1

log r
ZK

�
1

2
+ǫ

�
+

1

r
1
2
+ǫ−1

+
1

r−
1
2
+ǫ−1

+ g =

=

g∑
j=1

� π j

r
1
2
+ǫ−π j

+
π̄ j

r
1
2
+ǫ− π̄ j

+1
�
¾ 0,

as
π j

r
1
2
+ǫ−π j

+
π̄ j

r
1
2
+ǫ− π̄ j

+1 =
r1+2ǫ−|π j |2

(r
1
2
+ǫ−π j )(r

1
2
+ǫ− π̄ j )

¾ 0.

Now, from the theorem we get that

N∑
f=1

fΦr f

r
�

1
2
+ǫ

�
f −1
¶ g+O

� g

ǫrǫN

�
+O(r

N

2 ).

We divide by g and first let g→∞ (varying K), after that we let N→∞

and finally we take the limit when ǫ→0. In doing so we obtain the basic

inequality from []:
∞∑

f=1

fφr f

r
f

2 −1
¶ 1.

Remark .. Using the explicit formulae due to Lachaud and Ts-

fasman, one can deal with the case of asymptotically good families of

smooth projective absolutely irreducible algebraic varieties over finite

fields.

3. Proof of Theorem .

Our starting point will be the Weil explicit formula, the proof of

which can be found in [] or in [, Ch. XVII] (with slightly more general

conditions on the test functions).

Consider the class (W) of even real valued functions, satisfying the

following conditions:
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1) there exists ǫ>0 such that

∞Í

0

F(x)e

�
1

2
+ǫ

�
x

dx is convergent in the

sense of Cauchy;

2) there exists ǫ>0 such that F(x)e

�
1

2
+ǫ

�
x

has bounded variation;

3)
F(0)− F(x)

x
has bounded variation;

4) for any x we have F(x)=
F(x−0)+ F(x+0)

2
.

For such a function F we define

φ(s) =

+∞Í

−∞

F(x)e(s− 1

2
)x dx. (.)

The Weil explicit formula for Dedekind zeta functions of number

fields can be stated as follows:

Theorem . (Weil). Let K be a number field. Let F belong to the class

(W) and let φ(s) be defined by (.). Then the sum
∑

| Imρ|<T

φ(ρ), where ρ

runs through the non-trivial zeroes of the Dedekind zeta function of K, is

convergent when T→∞ and the limit
∑
ρ

φ(ρ) is given by:

∑
ρ

φ(ρ) = F(0)
�

2g−n(γ+log 8π)−r1
π
2

�
+4

∞Í

0

F(x) ch
�

x
2

�
+

+r1

∞Í

0

F(0)−F(x)

2 ch( x

2
)

dx+n

∞Í

0

F(0)−F(x)

2 sh( x

2
)

dx−2
∑
p,m

log Np

Np
m
2

F(m logNp), (.)

where the last sum is taken over all prime ideals p in K and all integers

m¾1.

First of all, we remark that, if we have a complex valued function

F(x) with both real and imaginary parts F0(x) and F1(x) being even and

lying in (W), we can apply (.) separately to F0(x) and F1(x). Thus the

explicit formula, being linear in the test function, is also applicable to the

initial complex valued function F(x).

We apply the explicit formula to the function defined by

FN ,ǫ(x) =





e−ǫ|x| if |x| < log(N+

1
2

),

0 if |x| > log(N+
1
2

)

(here N+
1

2
is take to avoid counting some of the terms with the factor

1

2
).

Next, we estimate each of the terms in (.).
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3.1. The sum over the primes.

∑
p,m

log Np

Np
m
2

FN ,ǫ(m logNp) =
∑

Npm¶N

log Np

Np

�
1
2
+ǫ

�
m
=

=
∑

Np¶N

log Np

Np
1
2
+ǫ−1

−
∑

Np¶N

log Np
∑

m>
log N

log Np

1

Np

�
1
2
+ǫ

�
m

.

We have to estimate the sum:

∆(N , ǫ) =
∑

Np¶N

log Np
∑

m>
log N

log Np

1

Np

�
1
2
+ǫ

�
m

.

Taking the absolute values, we can assume that ǫ is real. Calculating

the remainder term of the geometric series, we get:

∆(N , ǫ) ¶ (2+
p

2)
∑

Np¶N

log Np

Np

�
1
2
+ǫ

��h
log N

log Np

i
+1

�

(for (1−Np−1/2−ǫ)−1¶ (1−2−1/2)−1¶
p

2(1+
p

2)).

Let us split the sum into two parts according as whether Np>
p

N or

not. Taking into account that log Np[log N/ log Np]¾ log N − log Np for

log Np¶ [log
p

Np], we obtain:

∆(N , ǫ) ¶ (2+
p

2)

� ∑

Np¶
p

N

log Np

elog N( 1
2
+ǫ)
+

∑
p

N<Np¶N

log Np

Np(1+2ǫ)

�
.

Write

∆1(N , ǫ) =
∑

Np¶
p

N

log Np

elog N( 1
2
+ǫ)

, ∆2(N , ǫ) =
∑

p
N<Np¶N

log Np

Np(1+2ǫ)
.

For ∆1(N , ǫ) we have:

∆1(N , ǫ) ¶
1

N
1
2
+ǫ

∑

Np¶
p

N

log Np.

The last sum can be estimated with the help of Lagarias and Odlyzko

results (which use GRH, cf. [, Theorem .]):
∑

Np¶
p

N

log Np ¶
∑

Np
k¶
p

N

log Np =
p

N+O(N
1

4 log N(g+n log N))

with an effectively computable absolute constant in O. Thus we get:

∆1(N , ǫ) ¶
2+
p

2
Nǫ +a0

g log N +n log2 N

N
1
4
+ǫ

.
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We can estimate the sum ∆2(N , ǫ) as follows:

∆2(N , ǫ) ¶

∞Í

p
N

log t

t1+2ǫ dπ(t),

where π(t) is the prime counting function π(t)=
∑

Np¶t

1. As before, ac-

cording to Lagarias and Odlyzko, π(t)=

tÍ

2

dx

log x
+ δ(t), with |δ(t)|¶

¶a1

p
t(g+n log t). Thus, substituting, we get:

∆2(N , ǫ) ¶

∞Í

p
N

t−1−2ǫ dt+2|δ(
p

N)| log N

N
1
2
+ǫ
+

���
∞Í

p
N

δ(t)
1− (1+2ǫ) log t

t2+2ǫ dt

���.

We deduce that

∆2(N , ǫ) ¶
1

2ǫNǫ +2a1(g+n log N)
log N

N
1
4
+ǫ
+

+

∞Í

p
N

a1(g+n log t)
|1− (1+2ǫ) log t|

t
3
2
+2ǫ

dt.

For N¾8 we have:
∞Í

p
N

a1(g+n log t)
|1− (1+2ǫ) log t|

t
3
2
+2ǫ

dt ¶

∞Í

p
N

a1(g+n log t)
(1+2ǫ) log t

t
3
2
+2ǫ

dt.

Integrating by parts, we can find that
∞Í

p
N

log t

t
3
2
+2ǫ

dt =
log N

2
�

1

2
+2ǫ

�
N

1
4
+ǫ
+

1�
1

2
+2ǫ

�2

N
1
4
+ǫ

,

and
∞Í

p
N

log2 t

t
3
2
+2ǫ

dt =
log2 N

4
�

1
2
+2ǫ

�
N

1
4
+ǫ
+

log N

2
�

1
2
+2ǫ

�2

N
1
4
+ǫ
+

1�
1
2
+2ǫ

�3

N
1
4
+ǫ

.

We conclude that the following estimate holds:

∆2(N , ǫ) ¶
1

2ǫNǫ +a2

�
n log2 N

N
1
4
+ǫ
+

g log N

N
1
4
+ǫ

�
.

Putting everything together, we see that:

|∆(N , ǫ)| ≪ 1
ǫ0 Nǫ0

+
log N

N
1
4
+ǫ0

(n log N+ g). (.)
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3.2. Archimedean terms

First of all,

2

∞Í

0

FN ,ǫ(x) ch
�

x

2

�
dx = 2

log(N+ 1

2
)Í

0

e−ǫx ch
�

x

2

�
dx =

=

�
N+

1
2

� 1
2
−ǫ
−1

1
2
−ǫ

+O(1). (.)

Let

IN ,ǫ =

∞Í

0

1− FN,ǫ(x)

2 sh( x

2
)

dx and I∞,ǫ =

∞Í

0

1− e−ǫx

2 sh( x

2
)

dx.

We have for N¾4 :

|I∞,ǫ− IN ,ǫ | ¶
∞Í

log N

2

e
x
2

dx ¶
4p
N

.

Now,

I∞,ǫ =

∞Í

0

�
e−

x
2

1− e−x −
e−( 1

2
+ǫ)x

1− e−x

�
dx =

=

∞Í

0

��
e−

x
2

1− e−x −
e−x

x

�
+

�
e−x

x
− e−( 1

2
+ǫ)x

1− e−x

��
dx = ψ

�
1
2
+ǫ

�
−ψ

�
1
2

�
,

as

ψ(x) =
Γ
′(x)

Γ(x)
=

∞Í

0

�
e−t

x
− e−xt

1− e−t

�
dt.

The second integral

JN ,ǫ =

∞Í

0

1− FN,ǫ(x)

2 ch( x

2
)

dx

can be estimated along the same lines using an integral from [,

.]:
∞Í

0

e−ǫx

ch(
x
2

)
dx = ψ

�
1
4
+
ǫ
2

�
−ψ

�
3
4
+
ǫ
2

�
.
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Taking into account that ψ(2x)=
1
2

�
ψ(x)+ψ

�
x+

1
2

��
+ log 2, we

finally obtain:

JN ,ǫ =
π
2
+ log 2+ψ

�
1
4
+
ǫ
2

�
−ψ

�
1
2
+ǫ

�
+O

�
1p
N

�
,

IN ,ǫ = γ+ log 4+ψ
�

1
2
+ǫ

�
+O

�
1p
N

�
.

(.)

3.3. The sum over the zeroes: the main term

Let us estimate now the sum
∑
ρ

φ(ρ) over zeroes of ζK (s). Let ρ=

=
1
2
+ it be a zero of the zeta function of K on the critical line. Put

y= log
�

N+
1
2

�
. We have

φ(ρ) =

yÍ

−y

e−ǫ|x|+itx dx =

yÍ

0

e(−ǫ+it)x dx+

yÍ

0

e(−ǫ−it)x dx,

so

φ(ρ) =
2

ǫ2+ t2 (ǫ+ e−ǫ y (−ǫ cos(ty)+ t sin(ty))).

We divide the sum over ρ into three parts:

S1(ǫ) =
∑

ρ= 1

2
+it

ǫ

ǫ2+ t2 ;

S2( y, ǫ) =
∑

ρ= 1

2
+it

cos(ty)

ǫ2+ t2 ;

S3( y, ǫ) =
∑

ρ= 1

2
+it

t sin(ty)

ǫ2+ t2 ;

so that
∑
ρ

φ(ρ) = 2S1(ǫ)−2ǫe−ǫ y S2( y, ǫ)+2e−ǫ y S3( y, ǫ).

Let us relate the sum S1(ǫ) to ZK (s), the logarithmic derivative of

ζK (s). Stark’s formula (cf. [, ()]) gives us the following:

∑
ρ

1
s−ρ =

=
1

s−1
+

1

s
+ g− n

2
logπ+

r1

2
ψ
�

s

2

�
+ r2(ψ(s)− log2)+ ZK (s), (.)
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where as before ψ(s)=
Γ
′(s)

Γ(s)
. Specializing at s=

1
2
+ǫ, we obtain:

∑

ρ= 1

2
+it

ǫ

ǫ2+ t2 =
1

ǫ− 1

2

+
1

ǫ+ 1

2

+ g− n

2
logπ− r2 log 2+

+
r1

2
ψ
�

1
4
+
ǫ
2

�
+ r2ψ

�
1
2
+ǫ

�
+ ZK

�
1
2
+ǫ

�
. (.)

We note that the archimedean factors from the Stark formula and

from the initial Weil explicit formula cancel each other. We are left to

prove that S2( y, ǫ) and S3( y, ǫ) are sufficiently small.

3.4. The sum over the zeroes: the remainder term.

To estimate

S2( y, ǫ) =
∑

ρ= 1

2
+it

cos(ty)

ǫ2+ t2

we take the absolute values of all the terms in the sum so that

|S2( y, ǫ)| ¶
∑

ρ= 1

2
+it

1

|ǫ2+ t2| ¶
∑

ρ= 1

2
+it

n( j)

ǫ2
0 + (t−|ǫ1|)2

, (.)

where n( j) is the number of zeroes with |t− j|<1. A standard estimate

from [, Lemma .] yields n( j)≪ g+n log( j+2), thus

|S2( y, ǫ)| ≪

≪ g+n log(|ǫ1|+2)

ǫ2
0

+ g+n
|ǫ1|+1∑

j=1

log j

|ǫ1|+2− j
+ g+n log(|ǫ1|+2)≪

≪ (g+n log2(|ǫ1|+2))
�

1+
1

ǫ2
0

�
.

Let us finally estimate

S3( y, ǫ) =
∑

ρ= 1

2
+it

t sin(ty)

ǫ2+ t2 .

We have

S3( y, ǫ) =
∑

ρ= 1

2
+it

sin ty

t
−

∑

ρ= 1

2
+it

ǫ2 sin(ty)

t(ǫ2+ t2)
= A( y)− B( y, ǫ).

The series for the formal derivative of B( y, ǫ) with respect to y is

given by
∑

ρ= 1

2
+it

ǫ2 cos(ty)

ǫ2+ t2 .
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Using the estimates for S2( y, ǫ) we deduce that on any compact sub-

set of [0,+∞) this series is absolutely and uniformly convergent to B′( y),

and we have |B′( y, ǫ)|≪ |ǫ|2(g+ n log2(|ǫ1|+2))
�

1+
1

ǫ2
0

�
. Thus we see

that |B( y)|≪ y|ǫ|2(g+n log2(|ǫ1|+2))
�

1+
1

ǫ2
0

�
, since B(0, ǫ)=0.

3.5. The sum over the zeroes: the difficult part

We are left to estimate the term A( y).

Let us recall a particular case of Weil explicit formula which is due

to Landau (cf. []):
∑
ρ

xρ

ρ
= x−Ψ(x)− r log x− b− r1

2
log(1− x−2)− r2 log(1− x−1), (.)

where Ψ(x)=
∑

Npk¶x

log Np, b is the constant term of the expansion of

ZK (s) at 0, r= r1 + r2 − 1 and x is not a prime power. This formula is

stated in [] for x¾
3
2

, however, applying Theorem . to the function

Fx( y) =

(
e|y|/2 if |y| < log x,

0 if |y| > log x,

one can see that it is valid for any x>1. We also note that by an effec-

tive version of the prime ideals theorem ([, Theorem .]) we have the

following estimate:

Ψ(x)− x = O
�

x
1

2 log x(g+n log x)
�
. (.)

Now, we introduce

C(x) =
∑
ρ

xρ

ρ
, D(x) =

∑

ρ 6= 1

2

xρ

ρ− 1

2

and E(x) = D(x)−C(x).

From (.) and (.) we see that C(x) is an integrable function on com-

pact subsets of (1,+∞). Using the arguments similar to those from the

previous subsection we can deduce that the series for E(x) is absolutely

and uniformly convergent on compact subsets of [1,+∞) and thus E(x)

is a continuous function on this interval. From this we conclude that the

series for D(x) is also convergent to a locally integrable function.

If we put x= ey , we get

Re D(ey) = e
y

2

∑

ρ 6= 1

2

sin(ty)

t
,
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which is equal to e
y

2 A( y) up to a term corresponding to a possible zero

of ζK (s) at ρ=
1
2

.

Since the series for C(x) is not uniformly convergent, we will have

to work with distributions defined by C(x), D(x) and E(x). See [] for

the basic notions and results used here. From the fact that a convergent

series of distributions can be differentiated term by term we deduce that

the following equality holds:

d

dx

E(x)p
x
=

C(x)

2
p

x3
.

We apply (.) to the right hand side of this formula and integrate

from 1+ δ to x (here δ > 0). The obtained equality will be valid in

the sense of distributions, thus almost everywhere for the corresponding

locally integrable functions defining these distributions. Since E(x) is

continuous, we see that the resulting identity

E(x)p
x
= E(1+δ)+

xÍ

1+δ

t−Ψ(t)

2t
3
2

dt− r

xÍ

1+δ

log t

2t
3
2

dt−

−
xÍ

1+δ

b

2t
3
2

dt− r1

2

xÍ

1+δ

log (1− t−2)

2t
3
2

dt− r2

xÍ

1+δ

log (1− t−1)

2t
3
2

dt

actually holds pointwise on [1+δ,+∞). We use (.) to estimate t−
−Ψ(t). It is easily seen that all the integrals converge when δ→0. From

[, .RH] it follows that b≪ g+n.

E(1) =
∑

ρ 6= 1

2

1

ρ− 1

2

−
∑
ρ

1
ρ
= −1

2

∑

ρ= 1

2
+it

1
1

4
+ t2

,

the first sum being zero as the term in ρ and 1−ρ cancel each other. An

estimate for the last sum can be made using (.). This gives |E(1)|≪
≪ g+n. Putting it all together we see that |E(x)|≪px log2 x(g+n log x).

The estimate |C(x)|≪px log2 x(n+ g) can be obtained directly using

(.). Thus, we conclude that |A( y)|≪ y2(g+ny).

Finally, combining all together we get:

∑
ρ

φ(ρ) = 2S1(ǫ)+O
� |ǫ|4+ |ǫ|

ǫ2
0

(g+n log N)
log2 N

Nǫ0

�
.

This estimate together with (.), (.), (.) and (.) completes

the proof of the theorem. �



. Proof of Theorem . and of the corollaries 

Remark .. Using our theorem we can derive the basic inequality

from []. Indeed, we apply the formula (.) to express ZK

�
1
2
+ ǫ

�
via

the series
∑

ρ= 1

2
+it

ǫ

ǫ2+ t2 plus some archimedean terms. For a real positive

ǫ<
1
4

the latter sum is non-negative, thus we see that

∑
q¶N

Φq log q

q
1
2
+ǫ−1

+
n
2

logπ+ r2 log 2− r1

2
ψ
�

1
4
+
ǫ
2

�
− r2ψ

�
1
2
+ǫ

�
¶

¶ g+O
�

(g+n log N)
log2 N

ǫNǫ

�
+O

�p
N
�
.

Now, we divide by g and first let g→∞ (varying K), after that we

let N→∞ and finally we take the limit when ǫ→0. Taking into account

that

ψ
�

1

2

�
= −γ−2 log 2 and ψ

�
1

4

�
= −π

2
−γ−3 log2,

we obtain the basic inequality from []:

∑
q

φq log q
p

q−1
+φR

�
log(2

p
2π)+

π
4
+
γ

2

�
+φC(log(8π)+γ) ¶ 1.

Remark .. The choice of the test functions FN ,ǫ(x) in the explicit

formula is not accidental. Indeed, the resulting formulas “approximate”

the Stark formula (.) when N→∞.

4. Proof of Theorem . and of the corollaries

We will carry out the proofs in the function field case, the calcula-

tions in the number field case being exactly the same.

Proof of the Corollary .. Assume first that ǫ 6= 1

2
+

2πik

log r
, k ∈Z.

We note that

���
∞∑

f=1

fφr f

r

�
1
2
+ǫ

�
f −1

+
1

g j log r
ZK j

�
1
2
+ǫ

���� ¶

¶

���
∞∑

f=N+1

fφr f

r
�

1
2
+ǫ

�
f −1

���+
N∑

f=1

f

��� Φr f

g j
−φr f

���

r
�

1
2
+ǫ

�
f −1

+

+
1

g j

���
N∑

f=1

fΦr f

r

�
1
2
+ǫ

�
f −1

+
1

log r
ZK j

�
1

2
+ǫ

����.
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Given δ > 0 we choose an integer N such that the first sum is

less than δ (this is possible due to the basic inequality) and such that
1

rǫ0 N

�
1+

1

ǫ0

�
¶δ. Now, taking g sufficiently large, and using Theorem .

as well as the convergence of
Φr f

g j
toφr f , we conclude that the whole sum

is≪δ. Thus, we deduce that

lim
j→∞

ZK j

�
1
2
+ǫ

�

g j
= Z{K j}

�
1
2
+ǫ

�
. (.)

Now, the corollary immediately follows from Theorem . and (.).

Though we initially assumed that ǫ 6= 1
2
+

2πik

log r
, the statement still holds

for ǫ=
1
2
+

2πik

log r
as all the function are continuous (and even analytic)

for Reǫ>0.

Remark .. The formula (.) no longer holds when ǫ=0 as can be

seen from the fact that ZK

�
1
2

�
= gK −1. In fact, the identity holds if and

only if our family is asymptotically optimal. Whether it holds or not for

the logarithm of ζK (s) and not for its derivative seems to be very difficult

to say at the moment. Even for quadratic fields this question is far from

being obvious. It is known that in the number field case there exists a

sequence (di) in N of density at least
1
2

such that

lim
i→∞

logζ
Q(
p

di )

�
1

2

�

log di

= 0

(cf. []). The techniques of the evaluation of mollified moments of Dirich-

let L- functions used in that paper is rather involved. In general one can

prove an upper bound for the limit (cf. []). This is analogous to the

“easy” inequality in the classical Brauer––Siegel theorem.

The interest of the question about the behaviour of log ZK

�
1
2

�
can be

in particular explained by its connection to the behaviour of the order of

the Shafarevich––Tate group and the regulator of constant supersingular

elliptic curves over function fields, the connection being provided by the

Birch and Swinnerton-Dyer conjecture. In general, a similar question can

be asked about the behaviour of these invariants in arbitrary families of

elliptic curves. Some discussion on the problem is given in [] (beware,

however, that the proof of the main result there cannot be seen as a

correct one as the change of limits, which is a key point, is not justified).



. Proof of Theorem . and of the corollaries 

Proof of Theorem .. It follows from the basic inequality that

the series defining logζ{Ki }
(s) converges absolutely for Re s ¾

1

2
. The

function logζ{Ki }
(s) has a Dirichlet series expansion with positive co-

efficients, converging for Re s¾
1
2

. Thus, from a standard theorem on

Dirichlet series (cf. [, Lemma .]), it must converge in some open

domain Re s>
1
2
−δ0 for δ0> 0, defining an analytic function there. It

follows that in the same domain the series for Z{Ki}
(s) converges. Taking

any δ with 0<δ<δ0 we obtain:

���
N∑

f=1

fφr f

r
f

2 −1
− 1

log r
Z{Ki}

�
1
2

���� =
���

∞∑
f=N+1

fφr f

r

�
1
2
−δ

�
f −1

· r

�
1
2
−δ

�
f −1

r
f

2 −1

��� ¶

¶

���
∞∑

f=1

fφr f

r

�
1
2
−δ

�
f −1

��� · r

�
1
2
−δ

�
N −1

r
N
2 −1

O(r−δN).

This gives the necessary result.

Proof of the Corollary .. We use Theorem . to obtain the nec-

essary estimate much in the same spirit as in the proof of Theorem .

itself. Using the function field Brauer––Siegel theorem to find the value

for κ, we get:

���
N∑

f=1

φr f log
r f

r f −1
−κ

��� =
���

∞∑
f=N+1

fφr f

r
f

2 −1
· r

f

2 −1

f
· log

r f

r f −1

��� ¶

¶

���
∞∑

f=N+1

fφr f

r
f

2 −1

��� · r
N
2 −1
N
· log

rN

rN −1
= O(r−δN) ·O

�
r−

N
2

N

�
.

Indeed, N 7→ 1

N
(r

N

2 − 1) log
rN

rN −1
is decreasing for N ¾ 2. The required

estimate follows.

Remark .. Actually, our method gives an easy and conceptual

proof of the explicit version of the Brauer––Siegel theorem from []

(which is roughly speaking the statement of Corollary . with δ= 0).

It shows that the rate of convergence in the Brauer––Siegel theorem

essentially depends on how far to the left the limit zeta function ζ{Ki}
(s)

is analytic. In the number field case we even save log2 N in the estimate

of the error term compared to what is proven in [].
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Asymptotic methods in number theory

and algebraic geometry

(with P. Lebacque)

Abstract. The paper is a survey of recent developments in the

asymptotic theory of global fields and varieties over them. First, we give

a detailed motivated introduction to the asymptotic theory of global

fields which is already well shaped as a subject. Second, we treat in a

more sketchy way the higher dimensional theory where much less is

known and many new research directions are available.

Résumé. Cet article est un survol des développements récents dans

la théorie asymptotique des corps globaux et des variétés algébriques

définies sur les corps globaux. Dans un premier temps, nous donnons

une introduction détaillée et motivée à la théorie asymptotique des corps

globaux, théorie déjà bien établie. Puis nous aborderons plus rapidement

la théorie asymptotique en dimension supérieure où peu de choses sont

connues et où bien des directions de recherche sont ouvertes.

1. Introduction: the origin of the asymptotic theory

of global fields

The goal of this article is to give a survey of asymptotic methods in

number theory and algebraic geometry developed in the last decades.

The problems that are treated by the asymptotic theory of global fields

(that is number fields or function fields) and varieties over them are

quite diverse in nature. However, they are connected by the use of zeta

functions, which play the key role in the asymptotic theory.

We begin by a very well known problem which lies at the origin of

the asymptotic theory of global fields. Let Fr be the finite field with r

elements. For a smooth projective curve C over Fr we let Nr(C) be the

number of Fr-point on C. We denote by g(C) be the genus of C. The prob-

lem consists of finding the maximum Nr(g) of the numbers Nr(C) over

all smooth projective curves of genus g over Fr: Nr(g)=maxg(C)=g Nr(C).

Philippe Lebacque, Alexey Zykin, Asymptotic methods in number theory and algebraic

geometry, Actes de la Conf́erence “Théorie des Nombres et Applications” in: Mathemati-
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The first upper bound was discovered by André Weil in s as a

direct consequence of his proof of the Riemann hypothesis for curves

over finite fields. He showed that Nr(C) satisfies the inequality

Nr(C) ¶ r+1+2g
p

r.

Weil bound though extremely useful in many applications is far from

being optimal. A dramatic search for the improvements of this bound

and for the examples giving lower bounds on Nr(g) has begun in s

with the discovery of Goppa that curves over finite fields with many

points can be used to construct good error-correcting codes. To show how

important the developments in this area were it suffices to mention the

names of some mathematicians who turned their attention to these ques-

tions: J.-P. Serre, V. Drinfeld, Y. Ihara, H. Stark, R. Schoof, M. Tsfasman,

S. Vlădu̧t, G. van der Geer, K. Lauter, H. Stichtenoth, A. Garcia, etc.

As suggested in [] by J.-P. Serre the cases when g is small and

that when g is large require completely different treatment. That is the

latter case which interests us in this article. The first major result in this

direction was the following theorem of V. Drinfeld and S. Vlădu̧t []:

Theorem . (Drinfeld––Vlădu̧t). For any family of smooth projective

curves {Ci} over Fr of growing genus we have lim supi→∞

Nr(Ci)

g(Ci)
¶
p

r−1.

Moreover, in the case, when r is a square this bound turns out to be

optimal. The families of curves, attaining this bound are constructed in

many different ways: modular curves, Drinfeld modular curves, explicit it-

erated constructions, etc. We refer the reader to Section  for more details.

This result, significantly improved and then reinterpreted in terms of limit

zeta functions by M. Tsfasman and S. Vlădu̧t, lies at the very base of the

asymptotic theory of global fields. We will discuss all this in detail in

Section . It is also possible to extend the Drinfeld––Vlădu̧t inequalities

to the case of higher dimensional varieties. This serves as a keystone in the

construction of the higher dimensional asymptotic theory (see Section ).

We will now turn our attention to yet another source of development

of the asymptotic theory, this time in the case of number fields. Let K be

an algebraic number field, that is a finite extension of Q. We denote by

nK = [K :Q] its degree, and by DK its discriminant. An important question

(both on its own account and due to its applications in various domains of

number theory, arithmetic geometry and theory of sphere packings) is to

know the rate of grows of discriminants of number fields. The first bound

on DK was obtained by H. Minkowsky using the geometry of numbers. This
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bound was improved more than half a century later by H. Stark, J.-P. Serre

and A. Odlyzko ([], [], [], []) who used analytic methods in-

volving zeta functions. The bounds they prove are as follows:

Theorem . (Odlyzko). For a family of number fields {Ki} we have

log |DKi
| ¾ A · r1(Ki)+2B · r2(Ki)+ o(nKi

),

where r1(Ki) and r2(Ki) are respectively the number of real and complex

places of Ki. Unconditionally, we can take A = log(4π)+ γ+ 1≈ 60.8,

B= log(4π)+γ≈22.3, and, assuming the generalized Riemann Hypothe-

sis (GRH), one can take, A= log(8π)+γ+
π
2
≈215.3, B= log(8π)+γ≈

≈44.7, where γ=0.577 is Euler’s gamma constant.

The fact that GRH drastically improves the results is omnipresent in

the asymptotic theory of global fields. Fortunately, GRH is known for zeta

functions of curves over finite fields (Weil bounds) and, more generally, of

varieties over finite fields (Deligne’s theorem), which allows to have both

stronger results and simpler proofs in the case of positive characteristic.

M. Tsfasman and S. Vlădu̧t managed to generalize the above inequal-

ities taking into account the contribution of finite places of the fields. In

fact, the restriction of the so-called basic inequality proven by M. Tsfasman

and S. Vlădu̧t to infinite primes gives us the inequalities of Odlyzko––

Serre. If we restrict the basic inequality to finite places we obtain an

analogue of the generalized Drinfeld––Vlădu̧t inequality in the case of

number fields. The reader will find more information on this in the next

section of the paper.

The last, but not least, problem that led to the development of the

asymptotic theory of global fields and varieties over them was the Brauer––

Siegel theorem. Let hK denote the class number of a number field K and

let RK be its regulator. The classical Brauer––Siegel theorem, proven by

Siegel ([]) in the case of quadratic fields and by Brauer ([]) in gen-

eral describes the behaviour of the product hK RK in families of number

fields. The initial motivation for it was a conjecture of Gauss on imag-

inary quadratic fields, however it has got many important applications

elsewhere. The theorem can be stated as follows:

Theorem . (Brauer––Siegel). For a family of number fields {Ki} we

have lim
i→∞

log(hKi
RKi

)

log
Æ
|DKi
|
=1 provided the family satisfies two conditions:

(i) lim
i→∞

nKi

gKi

=0;

(ii) either GRH holds, or all the fields Ki are normal over Q.
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It is possible to remove the first and relax the second conditions of

the theorem. The first step towards it was made by Y. Ihara in [] who

considered families of unramified number fields. A complete answer (at

least modulo GRH) was given by M. Tsfasman and S. Vlădu̧t in [] who

showed how to treat this problem in the framework of the asymptotic

theory of number fields, in particular using the concept of limit zeta func-

tions. The corresponding question for curves over finite fields is also of

great interest since it describes the asymptotic behaviour of the number

of rational points on Jacobians of curves over finite fields. All this will be

discussed in detail in the Section .

In our introduction we mostly considered the one dimensional case of

number fields or function fields. Here the theory is best developed. How-

ever, there is quite a number of results and conjectures for higher dimen-

sional varieties with particularly nice arithmetical applications. Some of

the results in this actively developing area are discussed in Section .

Let us finally say that, despite of the fact that the theory of error

correcting codes and the theory of sphere packings are just briefly men-

tioned in our introduction their role in the creation of the asymptotic

theory of global fields is fundamental. Indeed many questions some

of which were mentioned here (maximal number of points on curves,

growth of the discriminants, etc.) received particular attention due to

their relation to error-correcting codes or sphere packings.

2. Basic concepts and results. Tsfasman––Vlăduţ invariants

of infinite global fields

Many authors considered the behaviour of arithmetic data (decom-

position of primes, genus, root discriminant, class number, regulator

etc.) in families of global fields. Tsfasman and Vlădu̧t laid the founda-

tion for the asymptotic theory of global fields in order not to consider

fields in a family, but the limit object (say, a limit zeta function) that

would encode the information concerning the asymptotics of the initial

arithmetic data.

In this section we introduce some definitions and give basic proper-

ties of families of global fields.

2.1. Tsfasman––Vlăduţ invariants

Arguments and proofs for the results from this subsection can be

found in []. Let us first define the objects we are to work with. Let

r be a power of a prime p, and let Fr denote the algebraic closure of Fr.
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Definition .. A family of global fields is a sequence K ={Kn}n∈N
such that:

1) Either all the Kn are finite extensions of Q or all the Kn are finite

extensions of Fr(t) with Fr ∩Kn=Fr.

2) if i 6= j, Ki is not isomorphic to K j .

A tower of global fields is a family satisfying in addition Kn⊂ Kn+1

for every n∈N. An infinite global (resp. number, resp. function) field is

the limit of a tower of global (resp. number, resp. function) fields, i. e. it

is the union
∞⋃

n=1

Kn.

Definition .. The genus gK of a function field is the genus of the

corresponding smooth projective curve. We define the genus of a number

field K as gK = log
p
|DK |, where DK is the discriminant of K.

As there are (up to an isomorphism) only finitely many global fields

with genus smaller than a fixed real number g, we have the following

proposition.

Proposition .. For any family {Ki} of global fields the genus gKi
→

→+∞.

Thus, in the number fields case, any infinite algebraic extension of Q

is an infinite number field, whereas in the function fields case, we require

the infinite algebraic extension of Fr(t) to contain a sequence of function

fields with genus going to infinity.

Let us now define the so-called Tsfasman––Vlădu̧t invariants of a

family of global fields. Throughout the paper, we use the acronyms NF

and FF for the number field and the function field cases respectively.

As before, the GRH indication means that we assume the generalized

Riemann Hypothesis for Dedekind zeta functions.

First we introduce some notation to be used throughout the paper:

Q the field Q (NF), Fr(t) (FF);

nK [K :Q];

DK discriminant of K (NF);

gK the genus of K (FF), the genus of K equal to log
p
|DK | (NF);

Pl f (K) the set of finite places of K;

Np the norm of a place p∈Pl f (K);

degp logr Np (FF);

Φq(K) the number of places of K of norm q;

ΦR(K) the number of real places of K (NF);

ΦC(K) the number of complex places of K (NF).
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We consider the set of possible indices for the Φq,

A =

(
{R,C, pk | p prime, k ∈ Z>0}, (NF)

{rk | k ∈ Z>0} (FF)

and A f its subset of finite parameters

�
pk | p prime, k ∈ Z>0

	
.

Definition .. We say that a family K = {Ki} of global fields is

asymptotically exact if the following limit exists for any q∈ A:

φq := lim
i→+∞

Φq(Ki)

gKi

.

It is said to be asymptotically good if in addition one of theφq is nonzero,

and asymptotically bad otherwise. The numbers φq are called the Tsfas-

man––Vlădu̧t invariants of the family K .

This definition has two origins. The first one is the information the-

ory since the families giving good algebraic geometric codes are those

for which φr exists and is big. The second one is more technical and can

be seen through Weil’s explicit formulae. For convenience we also put

φ∞ = lim
nKi

gKi

= φR+2φC.

Being asymptotically exact is not a restrictive condition. To be pre-

cise:

Proposition .. 1) Any family of global fields contains an asymptot-

ically exact subfamily.

2) Any tower of global fields is asymptotically exact and the φq ’s de-

pend only on the limit.

We can thus define the Tsfasman––Vlădu̧t invariants of an infinite

global fieldsK as the invariants of any tower having limitK . From now

on, we only consider asymptotically exact families, since they provide

natural framework for asymptotic considerations. One of the problems

of the asymptotic theory is to understand the set of possible {φq}. In the

next propositions we describe some the general properties of the {φq}.

Let us start with the basic inequalities:
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Theorem . (Tsfasman––Vlădu̧t). For any asymptotically exact fam-

ily of global fields, the following inequalities hold:

(NF−GRH)
∑
q

φq log q
p

q−1
+ (log

p
8π+

π
4
+
γ

2
)φR+ (log 8π+γ)φC ¶ 1,

(NF)
∑
q

φq log q

q−1
+ (log 2

p
π+

γ

2
)φR+ (log 2π+γ)φC ¶ 1,

(FF)
∞∑

m=1

mφrm

r
m
2 −1
¶ 1,

where γ is the Euler constant.

This result is central in what follows. For instance, it is used to show

the convergence of the limit zeta function associated to the family. It is

proven using the Weil explicit formulae, the effective Chebotarev den-

sity theorem for number fields and the Riemann hypothesis for function

fields.

In the case of towers of number fields (and of function fields if we

consider suitable quantities), the degree of the extension gives an upper

bound for the number of places above a prime number p:

Proposition .. For an asymptotically exact family of number fields

and any prime number p the following inequality holds:

+∞∑
m=1

mφpm ¶ φR+2φC.

Let us finally define the deficiency δK of an asymptotically exact

family K ={Ki} of global fields as the difference between the two sides

of the basic inequalities under GRH:

(NF) δK = 1−
∑
q

φq log q
p

q−1
− (log

p
8π+

π
4
+
γ

2
)φR− (log 8π+γ)φC

and

(FF) δK = 1−
∞∑

m=1

mφrm

r
m
2 −1

.

A remarkable fact is that the deficiency of infinite global fields is in-

creasing with respect to the inclusion (see []):K ⊂L implies δK ¶δL .

One knows that fields of zero deficiency exist in the function fields case

(c.f. Section ). Such infinite global fields are called optimal, and they

are of particular interest for the information theory.
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2.2. Ramification, prime decomposition and invariants

The precise statements and proofs of the results from this subsection

can be found in [] and []. The Tsfasman––Vlădu̧t invariants of infinite

global fields contain information on the ramification and the decom-

position of places in these fields. Indeed, one sees from Hurwitz genus

formula that any finitely ramified and tamely ramified tower of number

fields is asymptotically good (because it has bounded root discriminant).

For function fields, we have to ask in addition for the existence of a split

place. It is not excluded that there exists an asymptotically good infi-

nite global field with infinitely many ramified places and no split place,

but no examples have been found so far. In the case of function fields,

A. Garcia and H. Stichtenoth provided a widely ramified optimal tower

and an everywhere ramified tower of function fields with bounded g/n

is constructed in []. Unfortunately, we do not know anything similar for

number fields.

In general, we expect asymptotically good towers to have very lit-

tle ramification and some split places. The next question, first raised by

Y. Ihara, is how many places split completely in a towerK of global field.

It follows from the Chebotarev density theorem that the set of completely

split places has in general a zero analytic density, that is

lim
s→1+

∑
p∈D

Np−s

∑
p∈Pl f (Q)

Np−s
= 0,

where D is the set of places of Q that split completely in K /Q. In the

case of asymptotically good fields,
∑
p∈D

Np−1 is even bounded. However, in

the case of asymptotically bad fields, the numerator can have an infinite

limit whereas the ramification locus is very small (but infinite). We refer

the reader to [] for a more detailed treatment of the above questions.

3. Generalized Brauer––Siegel theorem and limit zeta functions

3.1. Generalizations of the Brauer––Siegel theorem

Now we turn our attention to the Brauer––Siegel theorem. The in-

depth study of mathematical tools involved in it leads to an important

notion of limit zeta functions which plays a key role in the study of

asymptotic problems.

While looking at the statement of the Brauer––Siegel theorem (The-

orem .) one immediately asks a question whether the two conditions
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present in it are indeed necessary. It is a right guess that the second

condition involving normality is technical in its nature (though getting

rid of it would be a breakthrough in the analytic number theory since it

is related to the so-called Siegel zeroes of zeta functions –– the real zeroes

which lie abnormally close to s=1; of course, presumably they do not ex-

ist). The second condition nK/ log
p
|DK |→0 looks much trickier. Using

the inequalities from Proposition . it is immediate that this condition is

equivalent to the fact that the family we consider is asymptotically bad.

A fundamental theorem of M. Tsfasman and S. Vlădu̧t from [] al-

lows both to treat the asymptotically good case of the Brauer––Siegel

theorem and to relax the second condition. We formulate it together

with a complementary result by A. Zykin [] which relaxes the second

condition in the asymptotically bad case. Before stating the result we give

the following definition:

Definition .. We say that a number field K is almost normal if

there exists a tower

K = Kn ⊃ · · · ⊃ K1 ⊃ K0 = Q,

where each step Ki/Ki−1 is normal.

Theorem . (Tsfasman––Vlădu̧t––Zykin). Assume that for an asymp-

totically exact family of number fields {Ki} either GRH holds or all the fields

Ki are almost normal. Then we have:

lim
i→∞

log(hKi
RKi

)

gKi

= 1+
∑
q

φq log
q

q−1
−φR log 2−φC log 2π,

the sum being taken over all prime powers q.

For an asymptotically bad family of number fields we have φR = 0

and φC = 0 as well as φq = 0 for all prime powers q, so the conclu-

sion of the theorem takes the form of that of the classical Brauer––

Siegel theorem. However, there are examples of families of number

fields where the right hand side of the equality in the theorem is ei-

ther strictly less or strictly greater than one (see []). Let us men-

tion one particularly nice corollary of the generalized Brauer––Siegel

theorem due to M. Tsfasman and S. Vlădu̧t: a bound on the regulators

that improves Zimmert’s bound (see [], his bound can be written as

lim inf
log RKi

gKi

¾ (log2+γ)φR+2γφC).

Theorem . (Tsfasman––Vlădu̧t). For a family of almost normal

number fields {Ki} (or any number fields under the assumption of GRH)
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we have

lim inf
log RKi

gKi

¾ (log
p
πe+γ/2)φR+ (log 2+γ)φC.

The proof of this bound is far from being trivial, it can be found in [].

The function field version of the Brauer––Siegel theorem is both eas-

ier to prove and requires no supplementary conditions (like normality

or GRH). In fact, it was obtained before the corresponding theorem for

number fields and allowed to guess what the result for number fields

should be (for a proof see [] or []).

Theorem . (Tsfasman––Vlădu̧t). For an asymptotically exact fam-

ily of smooth projective curves {Xi} over a finite field Fr we have:

lim
i→∞

log hi

gi
= log r+

∞∑
f=1

φr f log
r f

r f −1
,

where hi = h(Xi)= |(Jac Xi)(Fr)| is the cardinality of the Jacobian of Xi

over Fr.

Let cK =Ress=1 ζK (s) be the residue of the Dedekind zeta function

ζK (s)=
∏

q

(1− q−s)−Φq(K) of the field K at s= 1. Using the residue for-

mula (see [, Chapter VIII] and [, Chapter III])

cK =
2ΦR(K)(2π)ΦC(K)hK RK

wK

p
|DK |

(NF case);

cK =
hK rg

(r−1) log r
(FF case)

(here wK is the number of roots of unity in K) one can see that the

question about the behaviour of the ratio from the Brauer––Siegel the-

orem is reduced to the corresponding question for cK . To put it into a

more general framework, we first seek an interpretation of the arithmetic

quantities we would like to study in terms of special values of certain zeta

functions, then we study the behaviour of these special values in families

using analytic methods. We will see in Section  another applications

of this principle. One also notices that this reduction step explains the

appearance of the GRH in the statement of the Brauer––Siegel theorem.

Let us formulate yet another version of the generalized Brauer––

Siegel theorem proven by Lebacque in [, Theorem ]. It has the ad-

vantage of being explicit with respect to the error terms, thus giving

information about the Brauer––Siegel ratio on the “finite level”.



 Asymptotic number theory

Theorem . (Lebacque). Let K be a global field. Then

(i) in the function field case

log(cK log r) =
N∑

f=1

Φr f log
r f

r f −1
− log N−γ+O

� gK

NrN/2

�
+O

�
1
N

�
;

(ii) in the number field case assuming GRH

logcK =
∑
q¶x

Φq log
q

q−1
− log log x−γ+O

�nK log xp
x

�
+O

� gKp
x

�
,

where γ=0.577… is the Euler constant. The constants in O are abso-

lute and effectively computable (and, in fact, not very big).

This theorem can also be regarded as a generalization of the Mertens

theorem (see []). A slight improvement of the error term (as before,

assuming GRH) was obtained in []. An unconditional number field

version of this result is also available but is a little more difficult to state

([, Theorem ]). We should also note that Lebacque’s approach leads

to a unified proof of the asymptotically bad and asymptotically good

cases of Theorem . with or without the assumption of GRH.

3.2. Limit zeta functions

For the moment the asymptotic theory of global fields looks like a

collection of similar but not directly related results. The situation is clar-

ified immensely by means of the introduction of limit zeta functions.

Definition .. The limit zeta function of an asymptotically exact

family of global fieldsK ={Ki} is defined as

ζK (s) =
∏

q

(1− q−s)−φq(K ),

the product being taken over all prime powers in the number field case

and over prime powers of the form q= r f in the case of curves over Fr.

The basic inequalities from Theorem . give the convergence of the

above infinite product for Re s¾
1

2
with the assumption of GRH and for

Re s¾ 1 without it (in particular, in the function field case the infinite

product converges for Re s¾
1
2

). In fact, the basic inequalities themselves

can be restated in terms of the values of limit zeta functions. To formulate

them we introduce the completed limit zeta function:

ζ̃K (s) = es2−φRπ−sφR/2(2π)−sφCΓ

�
s

2

�φR
Γ(s)φCζK (s) (NF case);

ζ̃K (s) = rsζK (s) (FF case).
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Let ξ̃K (s) = ζ̃′K (s)/ζ̃K (s) be the logarithmic derivative of the com-

pleted limit zeta function. Then the basic inequalities from Section 

take the following form:

Theorem . (Basic inequalities). For an asymptotically exact family

of global fields K = {Ki} we have ξ̃K
�

1
2

�
¾ 0 in the function field case

and assuming GRH in the number field case and ξ̃K (1)¾ 0 without the

assumption of GRH.

Let us give an interesting interpretation of the deficiency in terms of

the distribution of zeroes of zeta functions on the critical line. In fact, the

results we are going to state are interesting on their own. To a global field

K we associate the counting measure∆K =
1
gK

∑
ρ

δt(ρ), where t(ρ)= Imρ

in the number field case and t(ρ)=
1

log r
Imρ in the function case; the

sum is taken over all zeroes ρ of ζK (s) in the number field case and

over all zeroes ρ of ζK (s) with t(ρ)∈ (−π,π] in the function field case

(in the case of function fields ζK (s) is periodic with the period equal to

2π/ log r), δt is the Dirac (atomic) measure at t. Thus we get a mea-

sure on R in the number field case and on R/Z in the function field

case. The asymptotic behaviour of ∆K was first considered by Lang []

in the asymptotically bad case. The following result is proven in [,

Theorem .] and [, Theorem .].

Theorem . (Tsfasman––Vlădu̧t). For an asymptotically exact fam-

ily of global fields K ={Ki}, assuming GRH, the limit lim
i→∞
∆Ki

exists in an

appropriate space of measures (to be precise, in the space of measures of

slow growth on R in the NF case,and in the space of measures on R/Z in

the FF case). Moreover, the limit is a measure with continuous density

MK (t) = Re ξ̃K
�

1
2
+ it

�
.

Of course, the expression for MK (t) can be written explicitly using

the invariants φq. Let us note two important corollaries of the theorem.

First, we get an interpretation for the deficiency

δK = ξ̃K
�

1

2

�
= MK (0)

as the asymptotic number of zeroes of ζKi
(s) accumulating at s=

1

2
. Sec-

ond, the theorem shows that for any family of number fields zeroes of

their zeta functions get arbitrarily close to s=
1

2
(and, in a sense, we even

know the rate at which zeroes of ζKi
(s) approach to this point).
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3.3. Limit zeta functions and Brauer––Siegel type results

Let us turn our attention to the Brauer––Siegel type results. The for-

mulae from Theorems . and . can be rewritten as

lim
i→∞

logcKi

gKi

= logζK (1).

Furthermore, using the absolute and uniform convergence of infinite

products for zeta functions for Re s> 1, Tsfasman and Vlădu̧t prove in

[, Proposition .] that for Re s>1 the equality

lim
i→∞

logζKi
(s)

gKi

= logζK (s)

holds. In fact, this equality remains valid for Re s< 1 (at least if we as-

sume GRH in the number field case). The proof of the next theorem can

be found in [] in the number field case and in [] in the function field

case (where the same problem is treated in a broader context).

Theorem . (Zykin). For an asymptotically exact family of global

fields K ={Ki} for Re s>
1
2

we have

lim
i→∞

log((s−1)ζKi
(s))

gKi

= logζK (s) (NF case assuming GRH);

lim
i→∞

log((rs−1)ζKi
(s))

gKi

= logζK (s) (FF case).

The convergence is uniform on compact subsets of the half-plane
¦

s |Re s>

>
1

2

©
.

The case s= 1 of theorem 3.9 is equivalent to the Brauer––Siegel

theorem and current techniques does not allow to treat it in full gener-

ality without the assumption of GRH. Thus getting unconditional results

similar to Theorem . looks inaccessible at the moment. The analogue

of the above result for s=
1
2

is considerably weaker and one has only an

upper bound:

Theorem . (Zykin). Let ρKi
be the first non-zero coefficient in the

Taylor series expansion of ζKi
(s) at s=

1
2

, i. e.

ζKi
(s) = ρKi

�
s− 1

2

�rKi
+ o

��
s− 1

2

�rKi
�

.

Then in the function field case or in the number field case assuming that

GRH is true, for any asymptotically exact family of global fields K ={Ki}



. Generalized Brauer––Siegel theorem and limit zeta functions 

the following inequality holds:

lim sup
i→∞

log |ρKi
|

gKi

¶ logζK
�

1

2

�
.

The interest in the study of the asymptotic behaviour of zeta func-

tions at s =
1
2

is partly motivated by the corresponding problem for

L-functions of elliptic curves over global fields, where this value is related

to deep arithmetic invariants of the elliptic curves via the Birch––Swin-

nerton-Dyer conjecture. We refer the reader to Section  for more details.

The question whether the equality holds in Theorem . is rather deli-

cate. It is related to the so called low-lying zeroes of zeta functions, that

is the zeroes of ζK (s) having small imaginary part compared to gK . It

might well happen that the equality

lim
i→∞

log |ρKi
|

gKi

= logζK
�

1
2

�

does not hold for all asymptotically exact familiesK ={Ki} since the be-

haviour of low-lying zeroes is known to be rather random. Nevertheless,

it might hold for “most” families (whatever it might mean).

To illustrate how hard the problem may be, let us remark that Iwaniec

and Sarnak studied a similar question for the central values of L-functions

of Dirichlet characters [] and modular forms []. They manage to

prove that there exists a positive proportion of Dirichlet characters (mod-

ular forms) for which the logarithm of the central value of the corre-

sponding L-functions divided by the logarithm of the analytic conductor

tends to zero. The techniques of the evaluation of mollified moments

used in these papers are rather involved. We also note that, to our knowl-

edge, there has been no investigation of low-lying zeroes of L-functions

of growing degree. It seems that the analogous problem in the function

field case has neither been very well studied.

Let us indicate that the corresponding question for the logarithmic

derivatives of zeta functions has a negative answer. Indeed, the func-

tional equation implies that lim
i→∞

ζ′
Ki

(1/2)

ζKi
(1/2)

= 1 for any family of function

fields Ki. However, the logarithmic derivative of the limit zeta function

ζK (s) at s=
1
2

equals one only for asymptotically optimal families (c.f.

Theorem .).

As a corollary of Theorem . one can obtain a result on the asymp-

totic behaviour of Euler––Kronecker constants.
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Definition .. The Euler––Kronecker constant of a global field K is

defined as γK =
c0(K)

c−1(K)
, where ζK (s)=c−1(K)(s−1)−1

+c0(K)+O(s−1).

In [] Y. Ihara made an extensive study of the Euler––Kronecker con-

stants of global fields, in particular, he obtained an asymptotic formula

for their behaviour in families of curves over finite fields. A complemen-

tary result in the number field setting was obtain in [] as a corollary

of Theorem .. In fact Theorem . gives that in asymptotically exact

families the coefficients of the Laurant series at s=1 of the logarithmic

derivatives ζ′
Ki

(s)/ζKi
(s) tend to the corresponding coefficients of the

Laurant series expansion of the logarithmic derivative of the limit zeta

function. For zeroes coefficient this becomes:

Corollary . (Ihara––Zykin). Assuming GRH in the number field

case and unconditionally in the function field case, for any asymptotically

exact family of global fields {Ki} we have

lim
i→∞

γKi

gKi

= −
∑
q

φq

log q

q−1
.

For the sake of completeness let us mention an explicit analogue of

Theorem . obtained in []:

Theorem . (Lebacque––Zykin). For any global field K, any integer

N¾10 and any ǫ=ǫ0+ iǫ1 such that ǫ0=Reǫ>0 we have

(i) in the function field case:

N∑
f=1

fΦr f

r

�
1
2
+ǫ

�
f−1
+

1

log r
·ZK

�
1
2
+ǫ

�
+

1

r−
1
2
+ǫ−1

= O
� gK

rǫ0 N

�
1+

1
ǫ0

��
+O

�
r

N

2

�
;

(ii) and in the number field case assuming GRH:

∑
q¶N

Φq log q

q
1
2
+ǫ−1

+ ZK

�
1
2
+ǫ

�
+

1

ǫ− 1

2

=

= O
� |ǫ|4+ |ǫ|

ǫ2
0

(gK +nK log N)
log2 N

Nǫ0

�
+O

�p
N
�
.

3.4. Some other topics related to limit zeta functions

Let us finally state some related results on the asymptotic properties

of the coefficients of zeta functions. For the moment they are only avail-

able in the function field case (see []). Let K/Fr(t) be a function field

and let ζK (s)=
∞∑

m=1

Dmr−ms be the Dirichlet series expansion of the zeta
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function of K. One knows that Dm is equal to the number of effective

divisors of degree m on the corresponding curve. We have the following

results on the asymptotic behaviour of Dm:

Theorem . (Tsfasman––Vlădu̧t). For an asymptotically exact fam-

ily of function fields K ={Ki} and any real µ>0 we have

lim
i→∞

log D[µg](Ki)

gKi

= min
s¾1

(µs log q+ logζK (s)).

Moreover, the minimum can be evaluated explicitly via φq (c.f. [, Propo-

sition .]).

Theorem . (Tsfasman––Vlădu̧t). For an asymptotically exact fam-

ily of function fieldsK ={Ki}, any ǫ>0 and any m such that
Dm

g
¾µ1+ǫ

we have
log Dm(Ki)

hKi

=
qm−g+1

q−1
(1+ o(1))

for g→∞, o(1) being uniform in m. Here µ1 is the largest of the two roots

of the equation

µ

2
+µ logr

µ

2
+ (2−µ) logr

�
1− µ

2

�
= −2 logr ζK (1).

We should note that o(1) from Theorem . is additive whereas

most of the previous results were estimates of multiplicative type (they

contained logarithms of the quantities in question). It would be interest-

ing to know whether there exist analogues of the above results in the

number field case.

Let us conclude by refering the reader to the Section  of [] for a

list of open questions.

4. Examples

4.1. Towers of modular curves

Let us begin with the examples of asymptotically optimal families

of curves over finite fields coming from towers of modular curves. The

first constructions were carried out by Ihara [], Tsfasman––Vlădu̧t––

Zink []. The research in this direction was continued by N. Elkies and

many others. Let us describe several constructions.

4.1.1. Classical modular curves

Let us start with the construction of towers of modular curves which

leads to asymptotically optimal infinite function fields. For further infor-

mation, we refer the reader to [, Chapter ]. It is well known that the
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modular group Γ(1)= PSL2(Z) acts on the Poincaré upper half-plane

h by

�
a b

c d

�
· z= az+ b

cz+d
. We fix a positive integer N and we define the

principal congruence subgroup of level N by

Γ(N) =
¦
γ ∈ Γ(1) | γ ≡

�
1 0

0 1

�
mod N

©
.

Γ(N)ÃΓ(1) and Γ(1)/Γ(N) is isomorphic to PSL2(Z/NZ). In particular,

[Γ(1) : Γ(N)] =






N3

2

∏
ℓ|N

�
1−ℓ−2

�
if N ¾ 3

6 if N = 2.

We also put Γ0(N)=
¦
γ∈Γ(1)|γ≡

�
∗ ∗
0 ∗

�
mod N

©
, so that Γ(N)⊂Γ0(N).

We have [Γ(1) :Γ0(N)]=N
∏
ℓ|N

(1−ℓ−1).

Let now Γ be a congruence subgroup, that is, any subgroup of Γ(1)

containing Γ(N). The most important case for us is Γ=Γ(N) or Γ0(N).

The set YΓ=Γ\h is equipped with an analytic structure, but is not com-

pact. To compactify it we add points at infinity (named cusps): Γ(1)

acts naturally on P1(Q) and we put XΓ= (Γ\h)∪ (Γ\P1(Q)). This way

it becomes a connected Riemann surface called modular curve. We let

X(N)= XΓ(N), X0(N)= XΓ0(N), Y (N)=YΓ(N) and Y0(N)= XΓ0(N).

If Γ′⊂Γ⊂Γ(1), there is a natural projection from XΓ′→ XΓ, which

allows us to compute the genus of the modular curve using the covering

(the function j is in fact the j-invariant of the elliptic curve C/(Z+ zZ)):

XΓ
// XΓ(1)

∼
j

// P1(C)

via the Hurwitz formula. For instance,

gX (N) = 1+
(N−6)[Γ(1) : Γ(N)]

12N
.

It can be shown that Y (1) classifies isomorphism classes of complex el-

liptic curves and that Y0(N) classifies pairs (E, CN ), E being a complex

elliptic curve and CN being a cyclic subgroup of E of order N .

Now, to construct towers of curves defined over finite fields, we need

to take reductions of our modular curves modulo primes. If S is a scheme

and E→S is an elliptic curve, the set of sections E(S) is an abelian group.

Let EN (S) denote the points of order dividing N in E(S). We call a level
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N structure an isomorphism αN : EN (S)→ (Z/NZ)2. One can prove that

there exists a smooth affine scheme Y (N) over SpecZ[1/N] classifying

the isomorphism classes of pairs (E, αN ) consisting of an elliptic curve

E/SpecZ[1/N] together with a level N structure αN on E. One can prove

that this curve is a model of Y (N) over SpecZ[ζN , 1/N], where ζN is a

primitive N th-root of 1. There is also a model of Y0(N) over SpecZ[1/N]

and this “coarse” moduli space classifies pairs consisting of an elliptic

curve together with a cyclic subgroup of order N . Models for X(N) and

X0(N) can also be obtained in such a way that they become compatible

with those for Y (N) and Y0(N). These curves have good reduction over

any prime ideal not dividing N . Moreover, the curve X0(N) can be de-

fined over Q and has good reduction at any prime number not dividing

N . Let p be such prime. We denote by C0,N the curve over Fp2 obtained

by reduction of X0(N) mod p. The curve X(N) can be defined over the

quadratic subfield of Q(ζN ) and has good reduction at all the primes not

dividing N . Let CN be the reduction of X(N) at a prime, i. e. a curve

over Fp2 . One can see that the genus of X0(N) and of X(N) is preserved

under reduction. The points of these curves corresponding to supersin-

gular elliptic curves are Fp2 -rational and there are
[Γ(1) :Γ(N)]

12
(p−1) of

them on CN . This leads to the following theorem:

Theorem . (Ihara, Tsfasman––Vlădu̧t––Zink). Let ℓ be a prime num-

ber not equal to p. The families {Cℓn } and {C0,ℓn } satisfy φp2 = p−1 and

therefore are asymptotically optimal.

Note that the result for C0,ℓn can be deduced immediately from the

corresponding result for Cℓn .

4.1.2. Shimura modular curves

Similar results on Shimura curves allow us to construct directly

asymptotically optimal families over Fr with r= q2
= p2m, p prime. To do

so, following Ihara, we start with a p-adic field kp with N(p)= q= pm.

Let Γ be a torsion-free discrete subgroup of G= PSL2(R)× PSL2(kp) with

compact quotient and dense projection to each of the two components

of G (such Γ’s exist). Ihara proved the following results that relate the

construction of optimal curves to (anabelian) class field theory, and

therefore are of great interest for us:

Theorem . (Ihara []). To any subgroup Γ of G with the above

properties one can associate a complete smooth geometrically irreducible curve

X over Fr of genus ¾2, together with a set Σ consisting of (q−1)(g−1)

Fr-rational points of X such that there is a canonical isomorphism (up to
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conjugacy) from the profinite completion of Γ to Gal(KΣ/K) where KΣ denotes

the maximal unramified Galois extension of the function field K of X in which

all the places corresponding to the points of Σ are completely split.

An easy computation leads to the following result:

Corollary .. For any square prime power r, there is a tower of

curves defined over Fr with φr=
p

r−1.

In fact, the elliptic modular curves X(N) that we constructed in the

previous section correspond to Γ= PSL2(Z[1/p]) and its principal con-

gruence subgroups of level N .

4.1.3. Drinfeld modular curves

The applicability of Drinfeld modular curves to the problem of con-

struction of optimal curves has been known since late ’s. The results

we are going to discuss next can be found in [].

Let L be a field of characteristic p and let L{τ} denote the ring of

non-commutative polynomials in τ, consisting of expressions of the form
n∑

i=0

aiτ
i, ai ∈ L, with multiplication satisfying τ · a= ap ·τ for any a∈ L.

Let A=Fr[T].

A Drinfeld module is an Fr-homomorphism φ : A→ L{τ}, a 7→φa

satisfying a few technical conditions. Let γ be the map γ : A→ L sending

a∈ A to the term of φa of degree zero. Notice that φ is determined by

φT and γ by γ(T). We consider only Drinfeld modules of rank 2 that

is we assume that φT is a polynomial in τ of degree 2 and we put

φT =γ(T)+ gτ+∆τ2 (∆ 6=0). More generally, one can define Drinfeld

modules over any A-scheme S.

Just as in the classical case, given a proper ideal I of A, one can

define a level I structure on φ. There is an affine scheme M(I) of finite

type over A that parametrizes pairs (φ, λ), whereφ is a Drinfeld module

over S and λ is a level I structure. The scheme M(I) has a canonical

compactification: there exists a unique scheme M(I) containing M(I) as

an open dense subscheme, whose fibres over Spec A[I−1] are smooth

complete curves. The group GL2(A/I) acts naturally on M(I) by oper-

ating on the structures of level I and this action extends to M(I).

From now on, let I be a prime ideal generated by a polynomial of

degree m prime to q−1. Now, consider the smooth complete (reducible)

curve X(I)=M(I)⊗A Fq over Fq. Note that the A-algebra structure on Fq

is obtained through the reductionmod T . Consider the subgroup

Γ0(I) =
¦�

a b
c d

�
∈ GL2(A) | c ∈ I

©
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and let Γ0(I) be the image of this subgroup in GL2(A/I). Finally, we con-

sider the smooth complete absolutely irreducible curve X0(I)=X(I)/Γ0(I).

The image of M(I)−M(I) in X0(I) consists of two Fq-rational points.

Moreover, the following result holds.

Theorem .. The family {X0(I)}, where I is a prime ideal of A gen-

erated by a polynomial of degree prime to q−1, is an asymptotically exact

family of curves defined over Fq, satisfying φq2= q−1 and thus is optimal.

Moreover, N. Elkies proved in [] that the family of curves Ẋ0(T n)

which parametrizes normalized Drinfeld modules (γ(T)= 1,∆= −1)

with a level T n structure is asymptotically optimal. He also related it

to the explicit towers of Garcia and Stichtenoth discussed in the next

subsection.

4.2. Explicit towers

In the last fifteen years, Garcia, Stichtenoth and many others man-

aged to construct asymptotically good towers explicitely in a recursive

way. Their interest comes from coding theory for such towers provide

asymptotically good codes via the construction of Goppa. Let us give an

example of such explicit towers.

Theorem . (Garcia––Stichtenoth). Let r = q2 be a prime power.

The tower {Fn} defined recursively starting from the rational function field

F0=Fr(x0) using the relations Fn+1= Fn(xn+1), where

x
q

n+1+ xn+1 =
xq

n

x
q−1
n +1

,

satisfies φr=
p

r−1 and thus is optimal.

If the cardinality of the ground field is not a square no towers with

φr=
p

r−1 are known. However, there exist optimal towers in the sense

that they have zero deficiency. Such towers can be constructed starting

from an explicit tower over a bigger field using a descent argument (see

Ballet––Rolland [] for the details) or using modular towers.

Let us now say a word about Elkies modularity conjecture. Elkies’

work shows that most of the recursive examples of Garcia and Stichtenoth

can be obtained by finding equations for suitable modular towers. This

made him formulate the following conjecture:

Conjecture . (Elkies). Any asymptotically optimal tower is modular.

Finally, let us note that there are other interesting constructions

leading to explicit asymptotically good towers of function fields. As an

example we mention the paper [] by P. Beelen and I. Bouw who use

Fuchsian differential equations to produce optimal towers over Fq2 .
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4.3. Classfield towers

As it was said in Section 2, tamely ramified infinite extensions of

global fields with finitely many ramified places and with completely split

places give examples of asymptotically good towers. Given a global field

K, it is natural to consider the maximal extension of K unramified out-

side a finite set of places S, in which places from a set T are completely

split. But these extensions are very hard to understand. The maximal ℓ-

extensions are much easier to handle. These extensions are the limits of

the ℓ-S-T -class field towers of K.

For a global field K, two sets of finite places S and T (T 6=∅(FF))

of K, and a prime number ℓ, consider the maximal abelian ℓ-extension

HT
S,ℓ

(K) of K, unramified outside S and in which the places from T are

split (in the case of function fields the assumption on T to be non-empty

is made in order to avoid infinite constant field extensions). Consider

the tower recursively constructed as follows: K0=K, Ki+1=HT
S,ℓ

(Ki). All

the extensions Ki/K are Galois, and we denote by GT
S

(K, ℓ) the Galois

group Gal
�⋃

i

Ki, K
�

. A sufficient condition for this tower to be infinite

is given by the Golod––Shafarevich theorem: if G is a finite ℓ-group then

dimFℓ H2(G, Fℓ)>
1
4

dimFℓ H1(G, Fℓ)
2. This allows to construct asymptot-

ically good infinite global fields. The following result is at the base of

many constructions of class field towers with prescribed properties:

Theorem . (Tsfasman––Vlădu̧t [] (NF), Serre [] , Niederre-

iter––Xing [] (FF)). Let K/k be a cyclic extension of global fields of de-

gree ℓ. Let T(k) be a finite set of non archimedean places of k and let T(K)

be the set of places above T(k) in K. Suppose in the function field case that

GCD{ℓ, degp, p∈T(K)}=1. Let Q be the ramification locus of K/k. Let

(FF) C(T , K/k) = #T(k)+2+δℓ+2
Æ

#T(K)+δℓ,

(NF) C(T , K/k) = #T(K)− t0+ r1+ r2+δℓ+2−ρ+

+2
Æ

#T(K)+ℓ(r1+ r2−ρ/2)+δℓ,

where δℓ = 1 if K contains the ℓ-root of unity, and 0 otherwise, t0 is

the number of principal ideals in T(k), r1 = ΦR(K), r2 = ΦC(K) and ρ

is the number of real places of k which become complex in K. Suppose that

#Q¾C(T , K/k). Then K admits an infinite unramfied ℓ-T(K)-class field

tower.
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One can construct such cyclic extension using the Grunwald-Wang

theorem (and sometimes even explicitly by hand) and deduce the fol-

lowing result:

Corollary . (Lebacque). Let n be an integer and let t1, …, tn be

prime powers (NF) (powers of p (FF)). There exists an infinite global field

(both in the number field and function field cases) such that φt1
, …,φtn

are all >0.

Another way to produce asymptotically good infinite class field tow-

ers is to use tamely ramified instead of unramified class field towers. This

is the subject of [] and [].

The question of finding asymptotically good towers with given Ts-

fasman––Vlădu̧t invariants equal to zero is more difficult. A related ques-

tion is to find out whether an infinite global extension realizes the maxi-

mal local extension at a given prime. Using results of J. Labute [] and

A. Schmidt [], the following theorem is proven:

Theorem . (Lebacque []). Let P={p1, …, pn}⊂Pl f (Q). Assume

that for any i=1, …, n we have ni distinct positive integers di,1, …, di,ni
. Let

I ⊂ Pl f (Q) be a finite set of finite places of Q such that I ∩ P =∅. There

exists an infinite global field K such that:

1) I ∩Supp(K )=∅,

2) For any i=1, …, n, and any j=1, …, ni, φ
pi ,Np

di, j

i

=
φ∞

nidi, j

>0.

3) One can explicitly estimate φ∞ and the deficiency in terms of P, I, ni

and dij.

The φp,q are invariants generalizing the classical φq: they count

the asymptotic number of primes of norm q above a given prime p

(see [] for a definition). In the case of Q they coincide with the clas-

sical ones. This extension is obtained as the compositum of a finite

extension ofQ with prescribed positive Φ
pi ,Npi

di, j >0 and an infinite class

field tower QP
S

(ℓ) satisfying the K(π, 1) property of A. Schmidt.

4.4. Bounds on the deficiency

We have already seen that, using towers of modular curves, one can

produce infinite function fields over Fr with zero deficiency. If r is a

square, there are even towers with φr =
p

r− 1. In the case of number

fields no zero deficiency infinite number fields are known. In fact we

doubt that the class field theory (which is for now the only method to

produce asymptotically good infinite number fields) can ever give such
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field. Let us quote here the example with the smallest known deficiency

due to F. Hajir and Ch. Maire [].

Let k=Q(ξ), where ξ is a root of f (x)= x6
+ x4−4x3−7x2− x+1.

Consider the element

η = −671ξ5
+467ξ4−994ξ3

+3360ξ2
+2314ξ−961 ∈ Ok.

Let K= k(
p
η). F. Hajir and Ch. Maire prove using a Golod––Shafarevich

like result that K admits an infinite tamely ramified tower satisfying

δ¶0.137… .

5. Higher dimensional theory

In this section we will mostly consider the function field case since

most of the results we are going to mention are unavailable in the num-

ber field case. However, we will give some references to the number field

case as well.

5.1. Number of points on higher dimensional varieties

The question about the maximal number of points on curves over

finite fields has been extensively studied by numerous authors. The anal-

ogous question for higher dimensional varieties has received compara-

tively little attention most probably due to its being significantly more

difficult.

As for the curves, we have the so-called Weil bound which is in this

case a famous theorem of Deligne. Similarly, this bound is not optimal

and the general framework for improving it is provided by the explicit

formulae. In the case of curves over Fr Oesterlé managed to find the

best bounds available through the techniques of explicit formulae for any

given r 6=2 (see []). A decade later the case of arbitrary varieties over

finite fields was treated by G. Lachaud and M. A. Tsfasman in [] and

[]. Let us reproduce here the main results from []. To do so we will

have to introduce some notation concerning varieties over finite fields.

Let X be a non-singular absolutely irreducible projective variety of

dimension d defined over a finite field Fr. We put X f = X ⊗Fr
Fr f and

X = X ⊗Fr
Fr. Let Φr f = Φr f (X) be the number of points of X having

degree f . Thus, for the number N f of Fr f -points of the variety X f we

have the formula N f =
∑
m| f

mΦrm . We denote by bs(X)=dimQl
H s(X ,Ql)

the l-adic Betti numbers of X .
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The family of inequalities proven in [] has a doubly positive se-

quence as a parameter. Let us introduce the corresponding notation. To

a sequence of real numbers v= (vn)n¾0 we associate the family of power

series ψm,v(t)=
∞∑

n=1

vmntn. We denote ψv(t)=ψ1,v(t) and let ρv be the

radius of convergence of this power series. A doubly positive sequence

v is such a sequence that 0¶ vn¶ v0 for all n, v0= 1 and for any z∈C,

|z|<1 we have 1+2 Reψv(t)¾0.

We will also need the functions

Fm,v(k, t) =
∞∑

s=0

(−1)sψm,v(r−kst) =
∞∑

n=1

vmntmn

1+ r−mnk
, Fv(k, t) = F1,v(k, t).

We let Av(z)=−min
|t|=z

Reψv(t) and denote

I(k) = {i | 1 ¶ i ¶ 2d−1, i 6= k, i 6= 2d− k}

the set of indices. We have the following inequalities:

Theorem . (Lachaud––Tsfasman). For any odd integer k, 1¶ k¶d,

any doubly positive sequence v= (vn)n¾0 with ρv> qk/2 and any M¾1 we

have

M∑
m=1

mΦrm(X)ψm,v(r−(2d−k)/2) ¶ ψv(r−(2d−k)/2)+ψv(rk/2)+
bk

2
+

+
∑

i odd,i 6=k

bi Av(r−(i−k)/2)+
∑

i even

biψv(r−(i−k)/2),

and

M∑
m=1

mΦrm(X)Fm,v(d−k, r−(2d−k)/2) ¶

¶ Fv(d−k, r−(2d−k)/2)+Fv(d−k, rk/2)+
bk

2
+

∑
i∈I(k)

bi Fv(d−k, r−(i−k)/2).

For example, taking the second inequality with ψv(t)=
t
2

we get

the classical Weil bound, taking the first one with ψv(t)=
t

1− t
we get

(asymptotically) a direct generalization of the Drinfeld––Vlădu̧t bounds.

These inequalities are not straightforward to apply. We refer the reader

to [] for more details on how to make good choices of the doubly pos-

itive sequence. Unfortunately, in the case of dimension d¾2 the optimal

choice of v is unknown.
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The asymptotic versions of these inequalities can be easily deduced

from Theorem . once one introduces proper definitions. For a variety

X let b(X)= max
i=0,…,d

bi(X) be the maximum of its l-adic Betti numbers.

Definition .. A family of varieties {X j} is called asymptotically

exact if the limits φr f = lim
j→∞

Φr f (X j)

b(X j)
and βi= lim

j→∞

bi(X j)

b(X j)
exist. It is asymp-

totically good if at least one of φr f is different from zero.

We can state the following corollary of Theorem .:

Corollary .. In the notation of Theorem . for an asymptotically

exact family of varieties one has

M∑
m=1

mφrmψm,v(r−(2d−k)/2) ¶

¶
βk

2
+

∑
i odd,i 6=k

βi Av(r−(i−k)/2)+
∑

i even

βiψv(r−(i−k)/2),

and
M∑

m=1

mφrm Fm,v(d− k, r−(2d−k)/2) ¶
βk

2
+

∑
i∈I(k)

βi Fv(d− k, r−(i−k)/2).

Taking particular examples of the sequence v one gets more tractable

inequalities (see []).

5.2. Brauer––Siegel type conjectures for abelian varieties

over finite fields

One can ask about the possibility of extending the Brauer––Siegel

theorem to the case of varieties over finite fields. The question is not as

easy as it might seem. First, mimicking the proof of Theorem . one gets

a result about the asymptotic behaviour of the residues of zeta functions

of varieties at s=d (see []). Such a result would be interesting if there

was a reasonable interpretation for this residue in terms of geometric

invariants of our variety.

Two other approaches were suggested by B. Kunyavskii and M. Tsfas-

man and by M. Hindry and A. Pacheco. Both of them have for their

starting points the Birch and Swinnerton-Dyer (BSD) conjecture which

expresses the value at s= 1 of the L-function of an abelian variety in

terms of certain arithmetic invariants related to this variety. However,

the situation with the asymptotic behaviour of this special value of the

L-functions is much less clear than before. Let us begin with the ap-

proach of Kunyavskii and Tsfasman.
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Let K/Fr be a function field and let A/K be an abelian variety over K.

We denote by ШA := |Ш(A/K)| the order of the Shafarevich––Tate group

of A, and by RegA the determinant of the Mordell––Weil lattice of A (see

[] for definitions). Note that in a certain sense ШA and RegA are the

analogues of the class number and of the regulator respectively. Kun-

yavskii and Tsfasman make the following conjecture concerning families

of constant abelian varieties (see []):

Conjecture .. Let A0 be a fixed abelian variety over Fr. Take an

asymptotically exact family of function fieds K = {Ki} and put Ai= A0×
× Fr

Ki. Then

lim
i→∞

logr(Шi ·Regi)

gi
= 1−

∞∑
m=1

φrm (K ) logr

|A0(Frm )|
rm .

This conjecture is actually stated as theorem in []. Unfortunately

the change of limits in the proof given in [] is not justified thus the

proof can not be considered a valid one. In fact the flaw looks very dif-

ficult to repair as the statement of the theorem can be reduced (via a

formula due to J. Milne, which gives the BSD conjecture in this case) to

an equality of the type lim
i→∞

logζKi
(s)

gKi

= logζK (s) at a given point s∈C

with Re s=
1
2

(in fact s belongs to a finite set of points depending on A0).

As we have already mentioned in the discussion following Theorem .

this question does not look accessible at the moment.

Let us turn our attention to the approach of Hindry and Pacheco.

They treat the case in some sense “orthogonal” to that of Kunyavskii and

Tsfasman. Here is the conjecture they make in []:

Conjecture .. Consider the family {Ai} of non-constant abelian va-

rieties of fixed dimension over the fixed function field K. We have

lim
i→∞

log(Шi ·Regi)

log H(Ai)
= 1,

where H(Ai) is the exponential height of Ai.

Using deep arguments from the theory of abelian varieties over

function fields the conjecture is reduced in [] to the one on zeroes of

L-functions of abelian varieties together with the BSD conjecture. Hindry

and Pacheco are actually faced with the problem of the type discussed

after Theorem ., this time for abelian varieties over function fields.

The following example serves as the evidence for the last conjecture

(see []):
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Theorem . (Hindry––Pacheco). For the family of elliptic curves Ed

over Fr(t), where the characteristic of Fr is not equal to 2 or 3, defined by

the equations y2
+ xy= x3− td, d¾1 and prime to r, the Tate––Shafare-

vich group Ш(Ed/K) is finite and

log(Шd ·Regd) ∼ log H(Ed) ∼ d log r

6
.

The proof of this theorem uses a deep result of Ulmer [] who

established the BSD conjecture in this case and explicitly computed the

L-functions of Ed. This reduces the statement of the theorem to a an

explicit (though highly non-trivial) estimate involving Jacobi sums.

The Conjectures . and . can be united (though not proved) with-

in the general asymptotic theory of L-functions over function fields. Such

a theory also explains why we get 1 as a limit in the second conjecture

and a complicated expression in the first one. We will sketch some as-

pects of the theory in the next subsection.

The analogous problem in the number field case has also been con-

sidered []. Unfortunately in the number field case we do not have a

single example supporting the conjecture.

5.3. Asymptotic theory of zeta and L-functions over finite fields

The proofs of the results from this subsection as well as lengthy dis-

cussions can be found in []. Let us first define axiomatically the class

of functions we are going to work with. This resembles the so called

Selberg class from the analytic number theory, but, of course the case

of function fields is infinitely easier from the analytic point of view, all

functions being rational (or even polynomial).

Definition .. An L-function L(s) over a finite field Fr is a holomor-

phic function in s such that for u= q−s the function L (u)= L(s) is a

polynomial with real coefficients, L (0)= 1 and all the roots of L (u)

are on the circle of radius r−
d

2 for some non-negative integer number d

which is called the weight of the L-function. We say that the degree of

the polynomial L (u) is the degree of the corresponding L-function. A

zeta function ζ(s) is a product of L-functions in powers ±1:

ζ(s) =
d∏

k=0

Lk(s)wk ,

where wk ∈ {−1, 1} and Lk(s) is an L-function of weight k.
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Both zeta functions of smooth projective curves or even varieties

over finite fields and L-functions of elliptic surfaces considered in the

previous sections are covered by this definition.

For the logarithm of a zeta function we have the Dirichlet series

expansion:

logζ(s) =
∞∑

f=1

Λ f

f
r− fs

which is convergent for Re s>
d
2

. In the case of a variety X/Fr we have a

simple interpretation for the coefficients Λ f = |X(Fr f )| as the number of

points on X over the degree f extension of Fr.

We are going to work with zeta and L-functions asymptotically, so

we have to introduce the notion of a family. We will call a sequence

{ζk(s)}k=1…∞=

¦ d∏
i=0

Lki(s)wi

©
k=1…∞

of zeta functions a family if the total

degree gk=

d∑
i=0

gki tends to infinity and d remains constant. Here gki are

the degrees of the individual L-functions Lki(s) in ζk(s).

Definition .. A family {ζk(s)}k=1…∞ of zeta functions is called

asymptotically exact if the limits

γi = lim
k→∞

gki

gk
and λ f = lim

k→∞

Λkf

gk

exist for each i = 0, …, d and each f ∈ Z, f ¾ 1. The family is called

asymptotically bad if λ f =0 for any f and asymptotically good otherwise.

In the case of curves over finite fields the denominators of zeta func-

tions are negligible from the asymptotic point of view. In general we give

the following definition:

Definition .. Let {ζk(s)} be an asymptotically exact family of ze-

ta functions. Define the set I ⊂ {0…d} by the condition i ∈ I if and

only if γi=0. We define ζn,k(s)=
∏
i∈I

Lki(s)wi the negligible part of ζk(s)

and ζe,k(s)=
∏

i∈{0,…,d}\I
Lki(s)wi the essential part of ζk(s). Define also

de=max{i | i /∈ I}.

Definition .. We say that an asymptotically exact family of zeta

or L-functions is asymptotically very exact if the series
∞∑

f=1

|λ f |q−
fde

2

is convergent.
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In the case of curves or varieties the positivity of Λ f automatically

implies the fact that the corresponding family is asymptotically very ex-

act. This is of course false in general (an obvious example of a fam-

ily which is asymptotically exact but not very exact is given by Lk(s)=

= (1− q−s)k). In general most of the results are proven for asymptotically

very exact families and not just for asymptotically exact ones.

We have already noted that the concept of limit zeta functions is of

utmost importance in the asymptotic theory.

Definition .. Let {ζk(s)} be an asymptotically exact family of ze-

ta functions. Then the corresponding limit zeta function is defined as

ζlim(s) = exp

�
∞∑

f=1

λ f

f
q− fs

�
.

Now, we can state the generalizations of most of the results concern-

ing zeta and L-functions over finite fields, given in the previous sections.

Let us begin with the basic inequalities. In fact, one should be able to

write most of the inequalities from Subsection . in this more general

setting. We give only the simplest statement of this type here:

Theorem .. Let {ζk(s)} be an asymptotically very exact family of

zeta functions. Then

wde

∞∑
j=1

λ j q
− de j

2 ¶
de∑

i=0

γi

q(de−i)/2+wi

.

The Brauer––Siegel type results can also be proven in this setting. The

following theorem includes all the function field versions of the Brauer––

Siegel type results from Section  except for the explicit ones (which can

also be, in principle, established for general zeta and L-functions).

Theorem .. 1) For any asymptotically exact family of zeta func-

tions {ζk(s)} and any s with Re s>
de

2
we have

lim
k→∞

logζe,k(s)

gk
= logζlim(s).

If, moreover, 2 Re s 6∈Z, then

lim
k→∞

logζk(s)

gk
= logζlim(s).

The convergence is uniform in any domain
de

2
+ǫ<Re s<

de+1

2
−ǫ, ǫ ∈

∈
�

0,
1
2

�
.
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2) If {ζk(s)} is an asymptotically very exact family with wde
= 1 we

have:
lim
k→∞

log |ck|
gk
¶ logζlim

�de

2

�
,

where rk and ck are defined using the Taylor series expansion

ζk(s) = ck

�
s− de

2

�rk

+O
��

s− de

2

�rk+1�
.

In the case of arbitrary L-functions the equality in () does not hold

in general. This means that the similar questions previously discussed

for function fields or elliptic curves over function fields are indeed of

arithmetic nature.

Finally we will state a result on the distribution of zeroes. Let L(s) be

an L-function and let ρ1, …, ρg be the zeroes of the corresponding poly-

nomial L (u). Define θk ∈ (−π, π] by ρk= q−d/2eiθk . One can associate

the measure ∆L=
1
g

g∑
k=1

δθk
to L(s).

Theorem .. Let {L j(s)} be an asymptotically very exact family of

L-functions. Then the limit distribution lim
j→∞
∆ j exists and has a nonneg-

ative continuous density function given by an absolutely and uniformly

convergent series 1−2
∞∑

k=1

λk cos(kx)q−
dk

2 .

In the case of families of elliptic curves over Fr(t) P. Michel provides

in [] an explicit estimate for the discrepancy in the equidistribution of

zeroes and a much more precise estimate for it on average.

A number of open questions concerning asymptotic properties of ze-

ta and L-functions can be found in the last section of []. It seems

that an analogue of this general asymptotic theory can be developed in

the number field case (at least assuming some plausible conjectures like

GRH or the Ramanujan––Peterson conjecture). This is yet to be done.
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Asymptotic properties of zeta functions

over finite fields

Abstract. In this paper we study asymptotic properties of fami-

lies of zeta and L-functions over finite fields. We do it in the context

of three main problems: the basic inequality, the Brauer––Siegel type

results and the results on distribution of zeroes. We generalize to this

abstract setting the results of Tsfasman, Vlăduţ and Lachaud, who stud-

ied similar problems for curves and (in some cases) for varieties over

finite fields. In the classical case of zeta functions of curves we extend a

result of Ihara on the limit behaviour of the Euler––Kronecker constant.

Our results also apply to L-functions of elliptic surfaces over finite fields,

where we approach the Brauer––Siegel type conjectures recently made

by Kunyavskii, Tsfasman and Hindry.

1. Introduction

The origin of the asymptotic theory of global fields and their zeta

functions can be traced back to the following classical question: what

is the maximal number of points Nq(g) on a smooth projective curve of

genus g over the finite field Fq. The question turns out to be difficult

and a wide variety of methods has been used for finding both upper and

lower bounds.

The classical bound of Weil stating that

|Nq(g)− q−1| ¶ 2g
p

q

though strong turns out to be far from optimal. A significant improve-

ment for it when g is large was obtained by Drinfeld and Vlădu̧t [].

Namely, they proved that lim sup
g→∞

Nq(g)

g
¶
p

q−1.

This inequality was a starting point for an in-depth study of asymp-

totic properties of curves over finite fields and of their zeta functions

initiated by Tsfasman and Vlădu̧t. This work went far beyond this initial

inequality and has led to the introduction of the concept of limit zeta

function which turned out to be very useful []. It also had numerous

applications to coding theory via the so-called algebraic geometric codes

(see, for example, the book [] for some of them).

Alexey Zykin, Asymptotic properties of zeta functions over finite fields, Finite Fields and

their Appications,  (), ––.
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The above mentioned study of limit zeta functions for families curves

involves three main topics:

(1) The basic inequality, which is a generalization of the Drinfeld –

Vlădu̧t inequality on the number of points on curves.

(2) Brauer––Siegel type results which are the extensions of the clas-

sical Brauer––Siegel theorem describing the asymptotic behaviour of the

class numbers and of the regulators in families of number fields. Here

asymptotic properties of the special values of zeta functions of curves

(such as the order of the Picard group) are studied.

(3) The distribution of zeroes of zeta functions (Frobenius eigenval-

ues) in families of curves.

There are at least two main directions in the further study of these

topics. First, one may ask what are the number field counterparts of

these results (for number fields and function fields are regarded by many

as facets of a single gemstone). The translation of these results to the

number field case is the subject of the paper []. The techniques turns

out to be very analytically involved but the reward is no doubts sig-

nificant as the authors managed to resolve some of the long standing

problems (such as the generalization of the Brauer––Siegel theorem to

the asymptotically good case, that is when the ratio nK/ log |DK | of the

degree to the logarithm of the discriminant does not tend to zero) as

well as to improve several difficult results (Odlyzko––Serre inequalities

for the discriminant, Zimmert’s bound for regulators).

Second, one may ask what happens with higher dimensional vari-

eties over finite fields. Here the answers are less complete. The first topic

(main inequalities) was extensively studied in []. The results obtained

there are fairly complete, though they do not directly apply to L-functions

(such as L-functions of elliptic curves over function fields). The second

topic is considerably less developed though it received some attention in

the recent years in the case of elliptic surfaces [], [] and in the case of

zeta functions of varieties over finite fields []. As for the results on the

third topic one can cite a paper by Michel [] where the case of elliptic

curves over Fq(t) is treated. Quite a considerable attention was devoted

to some finer questions related to the distribution of zeroes []. How-

ever, to our knowledge, not a single result of this type for asymptotically

good families of varieties was previously known.

The goal of our paper is to study the above three topic in more gen-

erality separating fine arithmetic considerations from a rather simple (in

the function field case) analytic part. We take the axiomatic approach,



. Introduction 

defining a class of L-functions to which our results may be applicable.

This can be regarded as the function field analogue of working with

the Selberg class in characteristic zero, though obviously the analytic

contents in the function case is much less substantial (and often times

even negligible). In our investigations we devote more attention to the

second and the third topics (Brauer––Siegel type results and distribution

of zeroes respectively) as being less developed then the first one. So,

while giving results on the basic inequality, we do not seek to prove them

in utmost generality (like in the paper []). We hope that this allows us

to gain in clarity of the presentation as well as to save a considerable

amount of space.

We use families of L-functions of elliptic curves over function fields

as our motivating example. After each general statement concerning

any of the three topics we specify what concrete results we get for zeta

functions of curves, zeta functions of varieties over finite fields, and

L-functions of elliptic curves over function fields. Our statements about

the distribution of zeroes (Theorem . and Corollary .) imply in the

case of elliptic curves over function fields a generalization of a result due

to Michel [] (however, unlike us, Michel provides a rather difficult

estimate for the error term). In the study of the Brauer––Siegel type

results we actually manage to find something new even in the classical

case of zeta functions of curves, namely we prove a statement on the limit

behaviour of zeta functions of which the Brauer––Siegel theorem from

[] is a particular case (see Theorem . and Corollary .). We also

reprove and extend some of Ihara’s results on Euler––Kronecker constant

of function fields [] incorporating them in the same general framework

of limit zeta functions (see Corollary .).

Here is the plan of our paper. In Section  we present the axiomatic

framework for zeta and L-functions with which we will be working, then

we give the so called explicit formulae for them. In the end of the section

we introduce several particular examples coming from algebraic geome-

try (zeta functions of curves, zeta functions of varieties over finite fields,

L-functions of elliptic curves over function fields) to which we will apply

the general results. Each further section contains a subsection where

we show what the results on abstract zeta and L-functions give in these

concrete cases. In Section  we outline the asymptotic approach to the

study of zeta and L-functions, introducing the notions of asymptotically

exact and asymptotically very exact families. We prove the zero distri-

bution results in Section . There we also give some applications to the
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distribution of zeroes and the growth of analytic ranks in families of el-

liptic surfaces (Corollaries . and .). The study of the Brauer––Siegel

type results is undertaken in Section . In the same section we show

how these results imply the formulae for the asymptotic behaviour of

the invariants of function fields generalizing the Euler––Kronecker con-

stant (Corollary .) and a certain bound towards the conjectures of

Kunyavskii––Tsfasman and Hindry––Pacheko (Theorem .). Section 

is devoted to the proof of several versions of the basic inequality. In this

section we generalize some of the results from [] to the case of zeta and

L-functions with not necessarily positive coefficients. Finally, in Section 

we discuss some possible further development as well as open questions.

2. Zeta and L-functions

2.1. Definitions

Let us define the class of L-functions we will be working with. Let Fq

be the finite field with q elements.

Definition .. An L-function L(s) over a finite field Fq is a holomor-

phic function in s such that for u= q−s the function L (u)= L(s) is a

polynomial with real coefficients, L (0)= 1 and all the roots of L (u)

are on the circle of radius q−
w

2 for some non-negative integer number w.

We will refer to the last condition in the definition as the Riemann

hypothesis for L(s) since it is the finite field analogue of the classical

Riemann hypothesis for the Riemann zeta function. The number w in

the definition of an L-function will be called its weight. We will also say

that the degree d of the polynomial L (u) is the degree of the L-function

L(s) (it should not be confused with the degree of an L-function in the

analytic number theory, where it is taken to be the degree of the polyno-

mial in its Euler product).

The logarithm of an L-function has a Dirichlet series expansion

log L(s) =
∞∑

f=1

Λ f

f
q− fs,

which converges for Re s>
w
2

. For the opposite of the logarithmic deriva-

tive we get the formula:

− L′(s)

L(s)
=

∞∑
f=1

(Λ f log q) q− fs
= u

L ′(u)

L (u)
log q.
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There is a functional equation for L(s) of the form

L(w− s) = ωq

�
s−w

2

�
d

L(s), (.)

where d=degL (u) and ω=±1 is the root number. This can be proven

directly as follows. Let L (u)=
d∏

i=1

�
1− u

ρi

�
. Then

L
�

1
uqw

�
=

d∏
i=1

�
1− 1

ρiuqw

�
=

d∏
i=1

ρi · q−wdu−d
d∏

i=1

�
u
ρ̄i
−1

�
=

= (−1)d−tq
−wd

2 u−d
d∏

i=1

�
1− u

ρi

�
,

where t is the multiplicity of the root −qw/2. We used the fact that all

coefficients of L (u) are real, so its non-real roots come in pairs ρ and

ρ̄, ρρ̄= qw.

Definition .. A zeta function ζ(s) over a finite field Fq is a product

of L-functions in powers ±1:

ζ(s) =
w∏

i=0

Li(s)ǫi ,

where ǫi ∈ {−1, 1}, Li(s) is an L-function of weight i.

For the logarithm of a zeta function we also have the Dirichlet series

expansion:

logζ(s) =
∞∑

f=1

Λ f

f
q− fs

which is convergent for Re s>
w

2
.

2.2. Explicit formulae

In this subsection we will derive the analogues of Weil and Stark

explicit formulae for our zeta and L-functions. The proofs of the Weil

explicit formula can be found in [] for curves and in [] for varieties

over finite fields. An explicit formula for L-functions of elliptic surfaces

is proven in []. In our proof we will follow the latter exposition.

Recall that our main object of study is ζ(s)=
w∏

i=0

Li(s)ǫi a zeta func-

tion with Li(s) given by

Li(s) =
di∏

j=1

�
1− q−s

ρij

�
.

As before, we define Λ f via the relation logζ(s)=
∞∑

f=1

Λ f

f
q− fs.
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Proposition .. Let v= (vf ) f¾1 be a sequence of real numbers and

let ψv(t)=
∞∑

f=1

vf t f . Let ρv be the radius of convergence of the seriesψv(t).

Assume that |t|< q−w/2ρv, then

∞∑
f=1

Λ f vf t f
= −

w∑
i=0

ǫi

di∑
j=1

ψv(qiρijt).

Proof. Let us prove this formula for L-functions. The formula for

zeta functions will follow by additivity.

The simplest is to work with L (u)=
d∏

j=1

�
1− u

ρ

�
. The coefficient of

u f in −uL ′(u)/L (u) is seen to be
∑
ρ

ρ− f for f ¾1. From this we derive

the equality: ∑
ρ

ρ− f
= −Λ f .

The map ρ 7→ (qwρ)−1 permutes the zeroes {ρ}, thus for any f ¾ 1 we

have: ∑
ρ

(qwρ) f
= −Λ f .

Multiplying the last identity by vf t f and summing for f =1, 2, … we get

the statement of the theorem.

From this theorem one can easily get a more familiar version of the

explicit formula (like the one from [] in the case of curves over finite

fields).

Corollary .. Let L(s) be an L-function, with zeroes ρ = q−w/2eiθ ,

θ ∈ [−π,π]. Let f : [−π, π]→C be an even trigonometric polynomial

f (θ ) = v0+2
Y∑

n=1

vn cos(nθ ).

Then we have the explicit formula:

∑
θ

f (θ ) = v0d−2
Y∑

f=1

vfΛ f q−
wf

2 .

Proof. We put t= q−
w

2 in the above explicit formula and notice that

the sum over zeroes can be written using cos since all the non-real zeroes

come in complex conjugate pairs.
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In the next sections we will also make use of the so called Stark

formula (which borrows its name from its number field counterpart

from []).

Proposition .. For a zeta function ζ(s) we have:

1

log q

ζ′(s)

ζ(s)
=

w∑
i=0

ǫi

di∑
j=1

1
qsρij −1

= −1
2

w∑
i=0

ǫidi+
1

log q

w∑
i=0

ǫi

∑
Li(θij )=0

1

s−θij
,

we assume that q−θij = ρij, the sum is taken over all possible roots θij

counted with multiplicity.

Proof. The first equality is a trivial consequence of the formulae

expressing Li(u) as polynomials in u.

The second equality follows from the following series expansion:

log q

ρ−1qs−1
+

log q

2
= lim

T→∞

∑

qθ=ρ
|θ |¶T

1

s−θ .

2.3. Examples

We have in mind three main types of examples: zeta functions of

curves over finite fields, zeta functions of varieties over finite fields and

L-functions of elliptic curves over function fields.

Example . (Curves over finite fields). Let X be an absolutely irre-

ducible smooth projective curve of genus g over the finite field Fq with

q elements. Let Φ f be the number of points of degree f on X . The zeta

function of X is defined for Re s>1 as

ζX (s) =
∞∏

f=1

(1− q− fs)−Φ f .

It is known that ζX (s) is a rational function in u= q−s. Moreover,

ζK (s) =

g∏
j=1

�
1− u

ρ j

��
1− u

ρ̄ j

�

(1−u)(1−qu)
,

and |ρ j |= q−
1

2 (Weil’s theorems). Note that the functional equation im-

plies that the real Frobenius roots all have even multiplicity. It can easily

be seen that in this case Λ f =N f (X) is the number of points on X ⊗Fq
Fq f

over Fq f . A very important feature of this example which will be lacking

in general is that Λ f ¾0 for all f .

Though ζX (s) is not an L-function, in all asymptotic considerations

the denominator will be irrelevant and it will behave as an L-function.
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This example will serve as a motivation in most of our subsequent

considerations, for most (but not all, see Section ) of the results we

derive for general zeta and L-functions are known in this setting.

Example . (Varieties over finite fields). Let X be a non-singular

absolutely irreducible projective variety of dimension n defined over

a finite field Fq. Denote by |X | the set of closed points of X . We put

X f = X ⊗Fq
Fq f and X̄ = X ⊗Fq

Fq. Let Φ f be the number of points of X

having degree f , that is Φ f = |{v ∈ |X | |deg(v)= f }|. The number N f of

Fq f -points of the variety X f is equal to N f =
∑
m| f

mΦm.

Let bs(X)= dimQl
H s( X̄ ,Ql) be the l-adic Betti numbers of X . The

zeta function of X is defined for Re(s)>n by the following Euler product:

ζX (s) =
∏

v∈|X |

1

1− (Nv)−s =

∞∏
f=1

(1− q− fs)−Φ f ,

where Nv = q−deg v . If we set ZX (u)=ζX (s) with u= q−s then the func-

tion ZX (u) is a rational function of u and can be expressed as

ZX (u) =
2n∏

i=0

Pi(X , u)(−1)i−1

,

where

Pi(X , u) =
di∏

j=1

�
1− u

ρij

�
,

and |ρij|= q−i/2 (Weil’s conjectures proven by Deligne). Moreover,

P0(X , u) = 1−u and P2n(X , u) = 1− qnu.

As before, we have that Λ f =N f (X)¾0.

The previous example is obviously included in this one. However,

it is better to separate them as in the case of zeta functions of general

varieties over finite fields much less is known. One more reason to dis-

tinguish between these two examples is that, whereas zeta functions of

curves asymptotically behave as L-functions, zeta functions of varieties

are “real” zeta functions. Thus there is quite a number of properties that

simply do not hold in general (for example, some of those connected to

the distribution of zeroes).

Example . (Elliptic curves over function fields). Let E be a non-

constant elliptic curve over a function field K = Fq(X) with finite con-
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stant field Fq. The curve E can also be regarded as an elliptic surface

over Fq. Let g be the genus of X . Places of K (that is points of X) will

be denoted by v. Let dv=deg v, |v|=Nv= qdeg v and let Fv=FNv be the

residue field of v.

For each place v of K we define av from |Ev(Fv)|= |v| + 1− av ,

where |Ev (Fv)| is the number of points on the reduction Ev of the curve E.

The local factors Lv(s) are defined by

Lv(s) =

¨
(1−av |v|−s

+ |v|1−2s)−1, if Ev is non-singular;

(1−av |v|−s)−1, otherwise.

We define the global L-function LE(s)=
∏

v

Lv(s). The product con-

verges for Re s>
3
2

and defines an analytic function in this half-plane.

Define the conductor NE of E as the divisor
∑
v

nv v with nv =1 at places

of multiplicative reduction, nv = 2 at places of additive reduction for

charFq>3 (and possibly larger when charFq=2 or 3) and nv=0 other-

wise. Let nE=deg NE=
∑
v

nv deg v.

It is known (see []) that LE(s) is a polynomial LE(u) in u= q−s of

degree nE+4g−4. The polynomial LE (u) has real coefficients, satisfies

LE (0)=1 and all of its roots have absolute value q−1.

Let αv , ᾱv be the roots of the polynomial 1− av t+ |v|t2 for a place

v of good reduction and let αv = av and ᾱv = 0 for a place v of bad

reduction. Then from the definition of LE(s) one can easily deduce that

Λ f =
∑

mdv= f

dv(αm
v
+ ᾱm

v
), (.)

the sum being taken over all places v of K and m¾1 such that m deg v= f .

This example will be the principal one in the sense that all our results

on L-functions are established in the view to apply them to this particular

case. These L-functions are particularly interesting from the arithmetic

point of view, especially due to the connection between the special value

of such an L-function at s=1 and the arithmetic invariants of the ellip-

tic curve (the order of the Shafarevich––Tate group and the regulator)

provided by the Birch and Swinnerton-Dyer conjecture.

We could have treated the more general example of abelian varieties

over function fields. However, we prefer to restrict ourselves to the case

elliptic curves to avoid technical complications.
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3. Families of zeta and L-functions

3.1. Definitions and basic properties

We are interested in studying sequences of zeta and L-functions. Let

us fix the finite field Fq.

Definition .. We will call a sequence {Lk(s)}k=1…∞ of L-functions

a family if they all have the same weight w and the degree dk tends to

infinity.

Definition .. We will call a sequence

{ζk(s)}k=1…∞ =

§ w∏
i=0

Lik(s)ǫi

ª

k=1…∞

of zeta functions a family if the total degree edk=

w∑
i=0

dik tends to infinity.

Here dik are the degrees of the individual L-functions Lik(s) in ζk(s).

Remark .. In the definition of a family of zeta functions we as-

sume that w =wk and ǫi = ǫik are the same for all k. Obviously, any

family of L-functions is at the same time a family of zeta functions.

Definition .. A family {ζk(s)}k=1…∞ of zeta or L-functions is called

asymptotically exact if the limits

δi = δi({ζk(s)}) = lim
k→∞

dik

edk

and λ f = λ f ({ζk(s)}) = lim
k→∞

Λ fk

edk

exist for each i=0, …, w and each f ∈Z, f ¾1. It is called asymptotically

bad if λ f =0 for any f and asymptotically good otherwise.

The following (easy) proposition will be important.

Proposition .. Let L(s) be an L-function. Then

1) for each f we have the bound |Λ f |¶ q
wf

2 d;

2) there exists a number C(q, w, s) depending on q, w and s but not on

d such that | log L(s)|¶C(q, w, s)d for any s with Re s 6= w
2

. The number

C(q, w, s) can be chosen independent of s if s belongs to a vertical strip

a¶Re s¶ b,
w
2
/∈ [a, b].

Proof. To prove the first part we use Proposition .. Applying it to

the sequence consisting of one non-zero term we get:

Λ f = −
∑

L (ρ)=0

qwfρ f . (.)

The absolute value of the right hand side of this equality is bounded

by q
wf

2 d.
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To prove the second part we assume first that Re s=ǫ+
w
2
>

w
2

. We

have the estimate:

| log L(s)| =
����

∞∑
f=1

Λ f

f
q− fs

���� ¶
∞∑

f=1

d

f
· q

wf

2 · q− f Re s ¶ d
∞∑

f=1

1

fqǫ f
.

For Re s<
w
2

we use the functional equation (.).

Proposition .. Any family of zeta and L-functions contains an asymp-

totically exact subfamily.

Proof. We note that both
dik

edk

and
Λ fk

edk

are bounded. For the first

expression it is obvious and the second expression is bounded by Propo-

sition .. Now we can use the diagonal method to choose a subfamily

for which all the limits exist.

As in the case of curves over finite fields we have to single out the

factors in zeta functions which are asymptotically negligible. This can be

done using Proposition ..

Definition .. Let {ζk(s)} be an asymptotically exact family of ze-

ta functions. Define the set I ⊂ {0, …, w} by the condition i ∈ I if and

only if δi=0. We define ζn,k(s)=
∏
i∈I

Lik(s)ǫi the negligible part of ζk(s)

and ζe,k(s)=
∏

i∈{0,…,w}\I
Lik(s)ǫi the essential part of ζk(s). Define also

we=max{i∈ {0, …, w}\ I}.

Remark .. The functions ζn,k(s) and ζe,k(s) make sense only for

families of zeta functions and not for individual zetas. We also note that

the definitions of the essential and the negligible parts are obviously

trivial for families of L-functions.

The following proposition, though rather trivial, turns out to be useful.

Proposition .. For an asymptotically exact family of zeta functions

{ζk(s)} we have λ f (ζk(s))=λ f (ζe,k(s)).

Proof. This is an immediate corollary of Proposition ..

The condition on a family to be asymptotically exact suffices for ap-

plications in the case of varieties over finite fields due to the positivity of

coefficients Λ f . However, in general we will have to impose somewhat

more restrictive conditions on the families.

Definition .. We say that an asymptotically exact family of zeta

or L-functions is asymptotically very exact if the series
∞∑

f=1

|λ f |q−
fwe

2

is convergent.
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Example .. An obvious example of a family which is asymp-

totically exact but not very exact is given by the family of L-functions

Lk(s)= (1− q−s)k. We have λ f =−1 for any f and the series
∞∑

f=1

(−1) is

clearly divergent.

Proposition .. Assume that we have an asymptotically exact fam-

ily of zeta functions

{ζk(s)} =

§ w∏
i=0

Lik(s)ǫi

ª

k=1…∞

,

such that all the families {Lik(s)} are also asymptotically exact. Then,

the family {ζk(s)} is asymptotically very exact if and only if the family

{Lwek(s)} is asymptotically very exact.

Proof. This follows from Proposition . together with Proposi-

tion ..

In practice, this proposition means that the asymptotic behaviour of

zeta functions for Re s>
we−1

2
is essentially the same as that of their

weight we parts. Thus, most asymptotic questions about zeta functions

are reduced to the corresponding question about L-function.

3.2. Examples

As before we stick to three types of examples: curves over finite

fields, varieties over finite fields and elliptic curves over function fields.

Example . (Curves over finite fields). Let {X j } be a family of

curves over Fq. Recall (see []) that an asymptotically exact family of

curves was defined by Tsfasman and Vlădu̧t as such that the limits

φ f = lim
j→∞

Φ f (X j)

g j
(.)

exist. This is equivalent to our definition since Λ f = N f (X)=
∑
m| f

mΦm.

Note a little difference in the normalization of coefficients: in the case

of curves we let λ f ({X j})= lim
j→∞

Λ fj

2g j
since 2g j is the degree of the corre-

sponding polynomial in the numerator of ζX j
(s) and the authors of []

choose to consider simply lim
j→∞

Λ fj

g j
.

For any asymptotically exact family of zeta functions of curves the

negligible part of ζX (s) is its denominator (1− q−s)(1− q1−s) and the

essential part is its numerator. Thus, zeta functions of curves asymptot-
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ically behave like L-functions. Any asymptotically exact family of curves

is asymptotically very exact as shows the basic inequality from [] (see

also Corollary . below), which is in fact due to positivity of Λ f .

Example . (Varieties over finite fields). In the case of varieties of

fixed dimension n over a finite field Fq we have an analogous notion of

an asymptotically exact family [], namely we ask for the existence of

the limits

φ f = lim
j→∞

Φ f (X j)

b(X j )
and δi = βi = lim

j→∞

bi(X j)

b(X j)
,

where b(X j)=
2n∑

i=0

bi(X j) is the sum of Betti numbers. Again this defini-

tion and our Definition . are equivalent.

In this case the factors (1− q−s) and (1− qn−s) of the denominator

are also always negligible. However, we can have more negligible factors

as the following example shows.

Take the product C×C, where C is a curve of genus g→∞. The di-

mension of the middle cohomology group H2 grows as g2 and b1= b3=2g

(Kunneth formula). Thus ζC×C(s) behaves like the inverse of an L-function.

If for an asymptotically exact family of varieties we have we=w−1=

=2n−1 then it is asymptotically very exact as shows a form of the basic

inequality [, (.)] (it actually gives that the series
∞∑

f=1

λ f q− f (n−1/2)

always converges), see also Corollary . below.

Example . (Elliptic curves over function fields). In the last exam-

ple we will be interested in two particular types of asymptotically exact

families.

Asymptotically bad families. Let us fix a function field K =Fq(X)

and let us take the sequence of all pairwise non-isomorphic elliptic curves

Ei/K. We get a family of L-functions since nEi
→∞. From (.) we deduce

that |Λ f |¶2
�∑

dv | f
dv

�
q

f

2 which is independent of nEi
. Thus, this family is

asymptotically exact and asymptotically bad, i. e. λ f = 0 for any f ¾ 1.

This will be the only fact important for our asymptotic considerations.

There will be no difference in the treatment of this particular family or

in that of any other asymptotically bad family of L-functions.

This family is considered in [] in the connection with the gener-

alized Brauer––Siegel theorem. The main result of that paper is the re-

duction of the statement about the behaviour of the order of the Tate––
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Shafarevich group and the regulator of elliptic curves over function fields

to a statement about the values of their L-functions at s=1. See also []

for a similar problem treated in the number field case.

Base change. Let us consider a family which is, in a sense, orthog-

onal to the previous one. Let K =Fq(X) be a function field and let E/K

be an elliptic curve. Let f : E → X be the corresponding elliptic surface.

Consider a family of coverings of curves X = X0← X1…← Xi←… and

the family of elliptic surfaces Ei, given by the base change:

E = E0
oo

f

��

E1
oooo

��

… oo Ei
oo oo

��

…

X = X0
oo X1

oo … oo Xi
oo …

Let Φv, f (Xi) be the number of points on Xi, lying above a closed point

v ∈ |X |, such that their residue fields have degree f over Fv .

Lemma .. The limits

φv, f = φv, f ({Xi}) = lim
i→∞

Φv, f (Xi)

g(Xi)

always exist.

Proof. We will follow the proof of the similar statement for Φ f

from [, Lemma .]. Let K2 ⊇ K1 ⊇ K be finite extension of function

fields. From the Riemann––Hurwitz formula we deduce the inequality

g(K2)− 1¾ [K2 : K1](g(K1)− 1), where [K2 : K1] is the degree of the

corresponding extension. Now, if we fix w a place of K1 above v and

consider its decomposition {w1, …, wr} in K2, then we have

r∑
i=1

deg wi ¶ [K2 : K1].

Thus we get for any n¾1 the inequality

n∑
f=1

fΦv, f (K2) ¶ [K2 : K1]
n∑

f=1

fΦv, f (K1).

Dividing we see that

n∑
f=1

fΦv, f (K2)

g(K2)−1
¶

n∑
f=1

fΦv, f (K1)

g(K1)−1
.
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It follows that the sequence
n∑

f=1

fΦv, f (Xi)

g(Xi)−1
is non-increasing and non-

negative for any fixed n and so has a limit. Taking n= 1 we see that

φv,1 exists, taking n=2 we derive the existence of φv,2 and so on.

Let us remark that Φ f (Xi)=
∑

m deg v= f

Φv,m(Xi), the sum being taken

over all places v of K and the same equality holds for φ f (in particular,

the family {Xi} is asymptotically exact).

For our family we can derive a concrete expression for the Dirichlet

series coefficients of the logarithms of L-functions. Indeed, (.) gives us

Λ f =
∑

mkdv= f

mdvΦv,m(αmk
v
+ ᾱmk

v
). (.)

Lemma .. Let Ei/Ki be a family of elliptic curves obtained by a

base change and let ni=nEi/Ki
be the degree of the conductor of Ei/Ki. Then

the ratio
ni

gi
is bounded by a constant depending only on E0/K0.

If, furthermore, charFq 6= 2, 3 or the extensions Ki/K0 are Galois for

all i then the limit ν= lim
i→∞

ni

gi
exists.

Proof. The proof basically consists of looking at the definition of the

conductor and applying the same method as in the proof of Lemma ..

Recall, that if E/K is an elliptic curve over a local field K, Tl(E) is its Tate

module, l 6= charFq, Vl(E)=Tl(E)⊗Ql, I(K̄/K) is the inertia subgroup of

Gal(K̄/K), then the tame part of the conductor is defined as

ǫ(E/K) = dimQl
(Vl(E)/Vl(E)I(K̄/K)).

It is easily seen to be non increasing in extensions of K, moreover it is

known that 0¶ǫ(E/K)¶2 (see [, Chap. IV, § ]).

If we let L = K(E[l]), γi(L/K)= |Gi(L/K)|, where Gi(L/K) is the

i th ramification group of L/K, then the wild part of the conductor is

defined as

δ(E/K) =
∞∑

i=1

γi(L/K)

γ0(L/K)
dimFl

(E[l]/E[l]Gi(L/K)).

One can prove [, Chap. IV, § ] that δ(E/K) is zero unless the char-

acteristic of the residue field of K is equal to 2 or 3. In any case, the

definition shows that δ(E/M) can take only finitely many values if we

fix E and let vary the extension M/K.

The exponent of the conductor of E over the local field K is defined to

be f (E/K)=ǫ(E/K)+δ(E/K). For an elliptic curve E over a global field
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K the v-exponent of the conductor is taken to be nv (E/K)= f (E/Kv),

where Kv is the completion of K at v.

From the previous discussion we see that for each valuation v of K0

and each place w of Ki over v there is a constant cv (depending on v and

on K) such that nw(E/Ki)¶ cv. Thus

ni =
∑

w∈Val(Ki )

nw deg w ¶
∑

v∈Val(K)

cv

∑
w|v

deg w ¶
� ∑

v∈Val(K)

cv

�
· [Ki : K0],

so the ratio
ni

gi
is bounded. If, furthermore, charFq 6= 2, 3, then an ar-

gument similar to the one used in the proof of Lemma . together

with the fact that nw(E)¶ nv(E) if w lies above v in an extension of

fields gives us that the sequence
ni

gi
is non-increasing and so it has a limit

ν =ν({Ei/Ki}).

In the case of Galois extensions we notice that nw(E) must stabilize

in a tower and all the nw(E) are equal for w over a fixed place v. Thus

the previous argument is applicable once again.

Now we can prove the following important proposition:

Proposition .. Any family of elliptic curves obtained by a base

change contains an asymptotically very exact subfamily. If, furthermore,

charFq 6= 2, 3 or the extensions Ki/K0 are Galois for all i then it is itself

asymptotically very exact.

Proof. Recall that for each Ei/Ki the degree of the corresponding

L-function is ni + 4gi − 4. It follows from the previous lemma that it

is enough to prove the existence of the limits eλ f = lim
i→∞

Λ f (Ei)

gi
and the

convergence of the series
∞∑

f=1

|eλ f |q− f .

The first statement is a direct corollary of Lemma . and (.). As

for the second statement, we have the following bound:

|Λ f | ¶ 2
∑

mkdv= f

mdvΦv,mq
f

2 = 2
∑

lk= f

lΦlq
f

2 = 2N f q
f

2 .

Now, the convergence of the series
∞∑

f=1

ν f q−
f

2 with ν f = lim
i→∞

N f (Xi)

gi
is a

consequence of the basic inequality for zeta functions of curves ([,

Corollary ] or Example .).

Remark .. It would be nice to know whether the statement of

the previous proposition holds without any additional assumptions, i. e.
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whether a family obtained by a base change is always asymptotically very

exact. This depends on Lemma ., which we do not know how to prove

in general.

The family of elliptic curves obtained by the base change was studied

in [] again in the attempts to obtain a generalization of the Brauer––

Siegel theorem to this case. Kunyavskii and Tsfasman formulate a conjec-

ture on the asymptotic behaviour of the order of the Tate––Shafarevich

group and the regulator in such families (see Conjecture . below).

They also treat the case of constant elliptic curves in more detail. Unfor-

tunately, the proof of the main theorem [, Theorem .] given there

is not absolutely flawless (the change of limits remains to be justified,

which seems to be very difficult if not inaccessible at present).

Remark .. If, for a moment, we turn our attention to general

families of elliptic surfaces the following natural question arises:

Question .. Is it true that any family of elliptic surfaces contains

an asymptotically very exact subfamily?

The fact that it is true for two “orthogonal” cases makes us believe

that this property might hold in general.

4. Distribution of zeroes

4.1. Main results

In this section we will prove certain results about the limit distri-

bution of zeroes in families of L-functions. As a corollary we will see

that the multiplicities of zeroes in asymptotically very exact families of

L-functions can not grow too fast.

Let C=C[0,π] be the space of real continuous functions on [0, π]

with topology of uniform convergence. The space of measures µ on

[0, π] is by definition the spaceM , which is topologically dual to C. The

topology onM is the ∗-weak one: µi→µ if and only if µi( f )→µ( f ) for

any f ∈C.

The space C can be considered as a subspace ofM : if φ(x)∈C then

µφ( f ) =

πÍ

−π
f (x)φ(x) dx.

The subspace C is dense inM in ∗-weak topology.

Let L(s) be an L-function and let ρ1, …,ρd be the zeroes of the cor-

responding polynomialL (u). Define θk ∈ (−π,π] by ρk= q−w/2eiθk . For
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a zero ρ∈ {ρ1, …,ρd} we let

mρ =

(
the multiplicity of ρ, if ρ 6∈ R;

1
2
· (multiplicity of ρ), if ρ ∈ R (that is ρ = q−w/2).

Since L (u)∈R[u], we note that mρ̄=mρ for any zero ρ. We asso-

ciate a measure to L(s) in the following way

µL( f ) =
2

d

∑
θk¾0

1¶k¶d

mρk
δθk

( f ), (.)

where δθk
is the Dirac measure supported at θk, i. e. δθk

( f )= f (θk) for

an f ∈C.

The main result of this section is the following one:

Theorem .. Let {L j(s)} be an asymptotically very exact family of

L-functions. Then the limit µlim= lim
j→∞
µL j

exists. Moreover, µlim is a non-

negative continuous function given by an absolutely and uniformly conver-

gent series:

µlim(x) = 1−2
∞∑

k=1

λk cos(kx)q−
wk

2 .

Proof. The absolute and uniform convergence of the series follows

from the definition of an asymptotically very exact family. It is sufficient

to prove the convergence of measures on the space C[0,π].

Finite linear combinations of cos(nx) for n∈N are dense in the space

of continuous functions C[0,π], so it is enough to prove that for any

n=0, 1, 2, … we have:

lim
j→∞
µL j

(cos(nx)) = µlim(cos(nx)). (.)

The Corollary . shows that:

µL j
(cos(nx)) =

2

d j

∑
θkj¾0

1¶k¶d j

mρkj
cos(nθkj) =

1

d j

d j∑
k=1

cos(nθkj) = −2Λnj q
− wn

2

for n 6= 0 and µL j
(1)= 1. Passing to the limit when j→∞ we get (.).

Corollary .. Let {ζ j (s)} be an asymptotically very exact family of

zeta functions with ǫwe
=1 and let rj be the order of zero of ζ j(s) at s=

we

2
.

Then

lim
j→∞

rj

ed j

= 0.
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Proof. Suppose that lim sup
rj

ed j

=ǫ>0. Taking a subsequence we

can assume that lim
j→∞

rj

ed j

=ǫ. Taking a subsequence once again and using

Proposition . we can assume that we are working with an asymptot-

ically very exact sequence of L-functions {L j(s)}= {Lwe j(s)} for which

the same property concerning rj holds.

By the previous theorem lim
j→∞
µL j
=µlim. Let us take an even contin-

uous non-negative function f (x)∈ C[0,π] with the support contained

in [0,
ǫ
α

), where α=2max

§ πÍ

0

µlim(x) dx, 1

ª
and such that f (0)=1. We

see that

ǫ ¶ lim
j→∞
µL j

( f (x)) =

πÍ

0

f (x)µlim(x) dx ¶
ǫ
2

,

so we get a contradiction. Thus the corollary is proven.

Remark .. It is easy to see that the same proof gives that the

multiplicity of the zero at any particular point of the critical line grows

asymptotically slower than d.

Remark .. A thorough discussion of zero distribution results of

similar type and their applications to various arithmetical problems can

be found in [].

4.2. Examples

Example . (Curves over finite fields). In the case of curves over

finite fields we recover the theorem . from []:

Corollary .. For an asymptotically exact family {Xi} of curves over

a finite field Fq the limit µ{Xi }
= lim

i→∞
µXi

is a continuous function given by

an absolutely and uniformly convergent series:

µ{Xi }
(x) = 1−

∞∑
k=1

kφkhk(x),

where

hk(x) =
qk/2 cos(kx)−1

qk+1−2qk/2 cos(kx)
.

Proof. This follows from Theorem . together with the following

series expansion:

∞∑
l=1

t−l cos(lkx) =
t cos(kx)−1

t2+1−2t cos(kx)
.
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Example . (Varieties over finite fields). We can not say much in

this case since the zero distribution Theorem . applies only to L-func-

tions. The only thing we get is that the multiplicity of zeroes on the line

Re s= n− 1
2

divided by the sum of Betti numbers tends to zero (Corol-

lary .).

Example . (Elliptic curves over function fields). Let us consider

first asymptotically bad families of elliptic curves. We have the following

corollary of Theorem ..

Corollary .. For an asymptotically bad family of elliptic curves {Ei}

over function fields the zeroes of LEi
(s) become uniformly distributed on the

critical line when i→∞.

This result in the particular case of elliptic curves over the fixed field

Fq(t) was obtained in []. In fact, unlike us, Michel gives an estimate

for the difference µEi
−µ{Ei}

in terms of the conductor nEi
. It would be

interesting to have such a bound in general.

Corollary .. For an asymptotically very exact family of elliptic curves

{Ei/Ki} obtained by a base change the limit µ{Ei/Ki }
= lim

i→∞
µEi/Ki

is a con-

tinuous function given by an absolutely and uniformly convergent series:

µ{Ei/Ki }
(x) = 1− 2

ν+4

∑
v, f

φv, f fdv

∞∑
k=1

αk
v
+ ᾱk

v

q fdv k
cos( fdv kx).

Corollary .. For a family of elliptic curves {Ei/Ki} obtained by a

base change
lim
i→∞

ri

gi
= 0.

Proof. By Proposition . any such family contains an asymptoti-

cally very exact subfamily so we can apply Corollary ..

Remark .. For a fixed field K and elliptic curves over it a similar

statement can be deduced from the bounds in []. However, in the case

of the base change Brumer’s bounds do not imply corollary .. It would

be interesting to see, what bounds one can get for the analytic ranks of

individual elliptic curves when we vary the ground field K. Getting such

a bound should be possible with a proper choice of a test function in the

explicit formulae.

5. Brauer––Siegel type results

5.1. Limit zeta functions and the Brauer––Siegel theorem

Our approach to the Brauer––Siegel type results will be based on

limit zeta functions.
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Definition .. Let {ζk(s)} be an asymptotically exact family of zeta

functions. Then the corresponding limit zeta function is defined as

ζlim(s) = exp

�
∞∑

f=1

λ f

f
q− fs

�
.

Remark .. If ζk(s)= ζ fk
(s) are associated to some arithmetic or

geometric objects fk we will denote the limit zeta function simply by

ζ{ fk}(s).

Here are the first elementary properties of limit zeta functions:

Proposition .. 1) For an asymptotically exact family of zeta func-

tions {ζk(s)} the series for logζlim(s) is absolutely and uniformly convergent

on compacts in the domain Re s>
we

2
, defining an analytic function there.

2) If a family is asymptotically very exact then ζlim(s) is continuous

for Re s¾
we

2
.

Proof. The first part of the proposition obviously follows from Propo-

sition . together with Proposition ..

By the definition of an asymptotically very exact family, the series

for logζlim(s) is uniformly and absolutely convergent for Re ys¾
we

2
so

defines a continuous function in this domain. Thus the second part is

proven.

It is important to see to which extent limit zeta functions are the

limits of the corresponding zeta functions over finite fields. The question

is answered by the generalized Brauer––Siegel theorem. Before stating it

let us give one more definition.

Definition .. For an asymptotically exact family of zeta functions

{ζk(s)} we call the limit lim
k→∞

logζk(s)

edk

the Brauer––Siegel ratio of this

family.

Theorem . (The generalized Brauer––Siegel theorem). For any

asymptotically exact family of zeta functions {ζk(s)} and any s with Re s>

>
we

2
we have

lim
k→∞

logζe,k(s)

edk

= logζlim(s).

If, moreover, 2 Re s 6∈Z, then

lim
k→∞

logζk(s)

edk

= logζlim(s).

The convergence is uniform in any domain
we

2
+ǫ<Re s<

we+1

2
−ǫ, ǫ∈

∈
�

0,
1
2

�
.
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Proof. To get the first statement we apply Proposition . and ex-

change the limit when k→∞ and the summation, which is legitimate

since the series in question are absolutely and uniformly convergent in a

small (but fixed) neighbourhood of s.

To get the second statement we apply Proposition ., which gives us:

lim
k→∞

logζn,k(s)

edk

= 0.

Now the second part of the theorem follows from the first.

Remark .. It might be unclear, why we call such a statement the

Brauer––Siegel theorem. We will see below in Subsection . that the

above theorem indeed implies a natural analogue of the Brauer––Siegel

theorem for curves and varieties over finite fields. It is quite remarkable

that the proof of Theorem . is very easy (say, compared to the one in

[]) once one gives proper definitions.

Remark .. Let us sketch another way to prove the generalized

Brauer––Siegel theorem. It might seem unnecessarily complicated but it

has the advantage of being applicable in the number field case when

we no longer have the convergence of log Lk(s) for Re s>
w
2

. We will

deal with L-functions to simplify the notation. The main idea is to prove

using Stark formula (Proposition . in the case of L-functions over finite

fields) that
L′

k
(s)

Lk(s)
¶C(ǫ)dk for any s with Re s¾

w
2
+ǫ. Then we apply the

Vitali theorem from complex analysis, which states that for a sequence of

bounded holomorphic functions in a domain D it is enough to check the

convergence at a set of points in D with a limit point in D. This method

is applied to Dedekind zeta functions in [].

Remark .. It is natural to ask, what is the behaviour of limit zeta

or L-functions for Re s¶
we

2
. Unfortunately nice properties of L-functions

such as the functional equation or the Riemann hypothesis do not hold

for Llim(s). This can be seen already for families of zeta functions of

curves. The point is that the behaviour of Llim(s) might considerably

differ from that of lim
k→∞

log Lk(s)

dk
when we pass the critical line.

5.2. Behaviour at the central point

It seems reasonable to ask, what is the relation between limit zeta

functions and the limits of zeta functions over finite fields on the critical

line (that is for Re s=
we

2
). This relation seems to be rather complicated.
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For example, one can prove that the limit lim
k→∞

1

edk

ζ′
k
(1/2)

ζk(1/2)
is always 1 in

families of curves (this can be seen from the functional equation), which

is definitely not true for the value
ζ′

lim
(1/2)

ζlim(1/2)
.

However, the knowledge of this relation is important for some arith-

metic problems (see the example of elliptic surfaces in the next subsec-

tion). The general feeling is that for “most” families the statement of the

generalized Brauer––Siegel theorem holds for s=
we

2
. There are very few

cases when we know it (see Section  for a discussion) and we, actually,

can not even formulate this statement as a conjecture, since it is not clear

what conditions on L-functions we should impose.

Still, in general one can prove the “easy” inequality. The term is bor-

rowed from the classical Brauer––Siegel theorem from the number field

case, where the upper bound is known unconditionally (and is easy to

prove) and the lower bound is not proven in general (one has to assume

either GRH or a certain normality condition on the number fields in

question). This analogy does not go too far though for in the classical

Brauer––Siegel theorem we work far from the critical line and here we

study the behaviour of zeta functions on the critical line itself.

Let {ζk(s)} be an asymptotically exact family of zeta functions. We

define rk and ck using the Taylor series expansion

ζk(s) = ck

�
s− we

2

�rk

+O
��

s− we

2

�rk+1�
.

Theorem .. For an asymptotically very exact family of zeta func-

tions {ζk(s)} such that ǫwe
=1 we have:

lim sup
k→∞

log |ck|
edk

¶ logζlim

�we

2

�
.

Proof. Replacing the family {ζk(s)} by the family {ζe,k(s)} we can

assume that w=we.

Let us write

ζk(s) = ck

�
s− w

2

�rk

Fk(s),

where Fk(s) is an analytic function in the neighbourhood of s=
w
2

such

that Fk

�
w

2

�
=1. Let us put s=

w

2
+θ , where θ >0 is a small positive real

number. We have

logζk

�
w
2
+θ

�

edk

=
log ck

edk

+ rk

logθ

edk

+

log Fk

�
w
2
+θ

�

edk

.
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To prove the theorem we will construct a sequence θk such that

()
1

edk

logζk

�
w
2
+θk

�
→ logζlim

�
w
2

�
;

()
rk

edk

logθk→0;

() lim inf
1

edk

log Fk

�
w

2
+θk

�
¾0.

For each natural number N we choose θ (N) a decreasing sequence

such that ���ζlim

�
w
2

�
−ζlim

�
w
2
+θ (N)

���� < 1
2N

.

This is possible since ζlim(s) is continuous for Re s ¾
w
2

by Proposi-

tion .. Next, we choose a sequence k′(N) with the property:
��� 1

dk

logζk

�
w
2
+θ

�
− logζlim

�
w
2
+θ

���� < 1
2N

for any θ ∈ [θ (N+1), θ (N)] and any k¾ k′(N). This is possible by The-

orem .. Then we choose k′′(N) such that

−rk logθ(N+1)

edk

¶
θ(N)

N

for any k¾ k′′(N), which can be done thanks to corollary . that gives

us for an asymptotically very exact family
rk

dk

→0. Finally, we choose an

increasing sequence k(N) such that k(N)¾max(k′(N), k′′(N)) for any

N .

Now, if we define N = N(k) by the inequality k(N)¶ k¶ k(N + 1)

and let θk=θ (N(k)), then from the conditions imposed on θk we auto-

matically get (1) and (2). The delicate point is (3). We apply the Stark

formula from Proposition . to get an estimate on
�

log Fk

�
w
2
+θ

��′
:

1

edk

�
logζk

�
w
2
+θ

�
− rk logθ

�′
= − log q

2edk

w∑
i=0

ǫidi+

+
1

edk

w−1∑
i=0

ǫi

∑
Li(θij )=0

1
w

2
+θ −θij

+
1

edk

∑
Lw (θwj)=0,θwj 6= w

2

1
w

2
+θ −θwj

.

The first term on the right hand side is clearly bounded by − log q from

below. The first sum involving L-functions is also bounded by a constant

C1 as can be seen applying the Stark formula to individual L-functions
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and then using Proposition .. The last sum is non-negative. Thus, we

see that
1

edk

�
log Fk

�
w
2
+θ

��′
¾C for any small enough θ . From this and

from the fact that Fk

�
w
2

�
=1 we deduce that

1

edk

log Fk

�
w

2
+θk

�
¾ Cθk → 0.

This proves (3) as well as the theorem.

Remark .. In the case when ǫwe
=−1 we get an analogous state-

ment with the opposite inequality.

Remark .. The proof of the theorem shows the importance of

“low” zeroes of zeta functions (that is zeroes close to s=
w

2
) in the study

of the Brauer––Siegel ratio at s=
w
2

. The lack of control of these zeroes

is the reason why we can not prove a lower bound on lim
k→∞

log |ck|
edk

.

Remark .. If we restrict our attention to L-functions with inte-

gral coefficients (i. e. such that L (u) has integral coefficients), then we

can see that the ratio
log |ck|

edk

is bounded from below by −w log q, at least

for even w. This follows from a simple observation that if a polynomial

with integral coefficients has a non-zero positive value at an integer point

then this value is greater then or equal to one. One may ask whether

there is a lower bound for arbitrary w and whether anything similar

holds in the number field case.

5.3. Examples

Example . (Curves over finite fields). First of all, let us show

that the generalized Brauer––Siegel Theorem . implies the standard

Brauer––Siegel theorem for curves over finite fields from [].

Let hX be the number of Fq-rational pints on the Jacobian of X , i. e.

hX = |Pic0
Fq

(X)|.
Corollary .. For an asymptotically exact family of curves {Xi}

over a finite field Fq we have:

lim
i→∞

log hXi

gi
= log q+

∞∑
f=1

φ f log
q f

q f −1
. (.)

Proof. It is well known (cf. []) that for a curve X the number hX

can be expressed as hX =LX (1), where LX (u) is the numerator of the
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zeta function of X (a polynomial in u). Using the functional equation for

ζX (s) we see that log hX = log LX (0)= log LX (1)+ g log q.

The right hand side of (.) can be written as log q+ 2 logζ{Xi }
(1),

where ζ{Xi }
(s) is the limit zeta function ζlim for the family of curves

{Xi} (the factor 2 appears from the definition of logζ{Xi }
(s), in which

we divide by 2g and not by g). Thus, it is enough to prove that

lim
i→∞

log LXi
(1)

2gi
= logζ{Xi }

(1).

This follows immediately from the first equality of Theorem ..

Using nearly the same proof we can obtain one more statement

about the asymptotic behaviour of invariants of function fields. To for-

mulate it we will need to define the so called Euler––Kronecker constants

of a curve X (see []):

Definition .. Let X be a curve over a finite field Fq and let

ζ′
X

(s)

ζX (s)
= −(s−1)−1

+γ0
X
+γ1

X
(s−1)+γ2

X
(s−1)2

+…

be the Taylor series expansion of
ζ′

X
(s)

ζX (s)
at s= 1. Then γX =γ

0
X

is called

the Euler––Kronecker constant of X and γk
X

, k¾ 1 are called the higher

Euler––Kronecker constants.

We also define the asymptotic Euler––Kronecker constants γk
{Xi }

from:

ζ′
{Xi }

(s)

ζ{Xi }(s)
= γ0

{Xi }
+γ1

{Xi}
(s−1)+γ2

{Xi}
(s−1)2

+…

(ζ{Xi }
(s) is holomorphic and non-zero at s=1 so its logarithmic deriva-

tive has no pole at this point).

The following result generalizes theorem  from []:

Corollary .. For an asymptotically exact family of curves {Xi} we

have

lim
i→∞

γk
Xi

gi
= γk

{Xi }

for any non-negative integer k. In particular,

lim
i→∞

γXi

gi
= −

∞∑
f=1

φ f f log q

q f −1
.

Proof. We apply the first equality from Theorem .. Using the ex-

plicit expression for the negligible part of zetas as (1− q−s)(1− q1−s),
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we see that

lim
i→∞

logζXi
(s)

2gi
= logζ{Xi }

(s)

for any s, such that Re s>
1
2

and s 6=1+
2πk

log q
, k∈Z and the convergence

is uniform in a< |s−1|< b for small enough a and b. We use the Cauchy

integral formula to get the statement of the corollary.

Remark .. It seems not completely uninteresting to study the be-

haviour of γk
X

“on the finite level”, i. e. to try to obtain bounds on γk
X

for

an individual curve X . This was done in [] for γX . In the general case

the explicit version of the generalized Brauer––Siegel theorem from []

might be useful.

Remark .. It is worth noting that the above corollaries describe

the relation between logζXi
(s) and logζ{Xi }

(s) near the point s=1. The

original statement of Theorem . is stronger since it gives this relation

for all s with Re s>
1
2

.

Example . (Varieties over finite fields). Just as for curves, for

varieties over finite fields we can get similar corollaries concerning the

asymptotic behaviour of ζXi
(s) close to s=d. We give just the statements,

since the proofs are nearly the same as before.

The following result is the Brauer––Siegel theorem for varieties proven

in [].

Corollary .. For an asymptotically exact family of varieties {Xi}

of dimension n over a finite field Fq we have:

lim
i→∞

log |ci|
b(Xi)

=

∞∑
f=1

φ f log
q fn

q fn−1
,

where ci=Ress=d ζXi
(s).

In the next corollary we use the same definition of the Euler––Kro-

necker constants for varieties over finite fields as in the previous example

for curves:

Corollary .. For an asymptotically exact family of varieties {Xi}

of dimension n we have lim
i→∞

γk
Xi

b(Xi)
=γk

{Xi}
for any k. In particular,

lim
i→∞

γXi

b(Xi)
= −

∞∑
f=1

φ f f log q

q fn−1
.

Example . (Elliptic curves over function fields). Let us recall

first the Brauer––Siegel type conjectures for elliptic curves over function

fields due to Hindry––Pacheko [] and Kunyavskii––Tsfasman [].
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For an elliptic curve E/K, K =Fq(X) we define cE/K and rE/K from

LE/K (s)= cE/K (s−1)rE/K + o((s−1)rE/K ). The invariants rE/K and cE/K are

important from the arithmetical point of view, since the geometric ana-

logue of the Birch and Swinnerton-Dyer conjecture predicts that rE/K is

equal to the rank of the group of K-rational points of E/K and cE/K can

be expressed via the order of the Shafarevich––Tate group, the covolume

of the Mordell––Weil lattice (the regulator) and some other quantities

related to E/K which are easier to control.

Conjecture . (Hindry––Pacheko). Let Ei run through a family of

pairwise non-isomorphic elliptic curves over a fixed function field K. Then

lim
i→∞

log |cEi/K |
h(Ei)

= 0,

where h(Ei) is the logarithmic height of Ei.

Remark .. We could have divided log |cEi/K | by nEi
in the state-

ment of the above conjecture since h(Ei) and nEi
have essentially the

same order of growth.

Conjecture . (Kunyavskii––Tsfasman). For a family of elliptic

curves {Ei/Ki} obtained by a base change we have:

lim
i→∞

log |cEi/Ki
|

gKi

= −
∑

v∈X , f¾1

φv, f log
|Ev(FNv f )|

Nv f
.

One can see that the above conjectures are both the statements of

the type considered in the Subsection .. It is quite obvious for the

first conjecture and for the second conjecture we have to use the explicit

expression for the limit L-function:

log L{Ei/Ki}
(s) = − 1

ν +4

∑
v, f

φv, f log
�
1− (α f

v
+ ᾱ f

v
)Nv− fs

+Nv f (1−2s)
�
.

One can unify these two conjectures as follows:

Conjecture .. For an asymptotically very exact family of elliptic

curves over function fields {Ei/Ki} we have:

lim
i→∞

log |cEi/Ki
|

di
= log L{Ei/Ki }

(1),

where di=nEi
+4gKi

−4 is the degree of LEi/Ki
(s).

We are, however, sceptical about this conjecture holding for all fam-

ilies of elliptic curves. Theorems . and . imply the following result (a

particular case of which was stated in []) in the direction of the above

conjectures:
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Theorem .. For an asymptotically very exact family of elliptic

curves {Ei/Ki} the following identity holds:

lim
i→∞

log LEi/Ki
(s)

di

= log L{Ei/Ki }
(s),

for Re s>1. Moreover,

lim
i→∞

log |cEi/Ki
|

gi
¶ log L{Ei/Ki}

(1).

Remark .. If we consider split families of elliptic curves (i. e.

Ei = E× Xi, where E/Fq is a fixed elliptic curve) then the proof of the-

orem . from [] gives us that the question about the behaviour of

LEi/Xi
(s) at s= 1 translates into the same question concerning the be-

haviour of ζXi
(s) on the critical line. For example, if the curve E is

supersingular, then Conjecture . holds if and only if

lim
i→∞

log |ζXi
(1/2)|

gi
= logζ{Xi }

�
1
2

�

(where ζXi

�
1
2

�
is understood as the first non-zero coefficient of the Tay-

lor series expansion of ζXi
(s) at s=

1
2

). So, to prove the simplest case of

Conjecture . we have to understand the asymptotic behaviour of zeta

functions of curves over finite fields on the critical line.

6. Basic inequalities

The goal of this section is to prove various versions of the basic in-

equality which can be seen as a generalization of the Drinfeld––Vlădu̧t

inequality for the number of points on curves over finite fields. We will

start with the case of L-functions, where a little more can be said. Next,

we will prove a weaker result in the case of zeta functions.

6.1. Basic inequality for L-functions

Our goal here is to prove the following theorem, generalizing the

basic inequality from [].

Theorem .. Assume we have an asymptotically exact family {Lk(s)}

of L-functions of weight w or an asymptotically exact family of zeta func-

tions {ζi(s)} with ζe,i(s) being an L-function of weight w for any i. Then

for any b∈N the following inequality holds:

b∑
j=1

�
1− j

b+1

�
λ j q

−wj

2 ¶
1
2

. (.)
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Proof. Using Proposition . one immediately sees that it is enough

to prove the statement of the theorem for L-functions.

As in the proof for curves our main tool will be the so called Drinfeld

inequality. We take an L-function L(s) and let αi= q
w

2 ρi, whereρi are the

roots of L (u), so that |αi|=1. For any αi we have

0 ¶ |αb
i
+αb−1

i
+…+1|2 = (b+1)+

b∑
j=1

(b+1− j)(α
j

i
+α

− j

i
).

Thus

b+1 ¾ −
b∑

j=1

(b+1− j)(α
j

i
+α

− j

i
).

We sum the inequalities for i=1, …, d. Since the coefficients ofL (u) are

real we note that
d∑

i=1

α
j

i
=

d∑
i=1

α
− j

i
. From (.) we see that Λ j=−qwj

d∑
i=1

ρ
j

i
.

Putting it together we get:

d(b+1) ¾ 2
b∑

j=1

(b+1− j)Λ j q
−wj

2 .

Now, we let vary Lk(s) so that dk→∞ and obtain the stated inequal-

ity.

Unfortunately, we are unable to say anything more in general with-

out the knowledge of some additional properties of λ j . However, the next

corollary shows that sometimes we can do better.

Corollary .. If a family {Lk(s)} is asymptotically exact then

∞∑
j=1

λ j q
−wj

2 ¶
1
2

,

provided one of the following conditions holds:

1) either it is asymptotically very exact or

2) λ j¾0 for any j.

Proof. To prove the statement of the corollary under the first as-

sumption we choose an ǫ>0 and b′ ∈N such that the sum

∞∑
j=b′+1

|λ j |q−
wj

2 < ǫ.
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Taking b′′> b, we apply the inequality from Theorem . with b= b′′. We

get:

1
2
¾

b′′∑
j=1

�
1− j

b′′+1

�
λ j q

− wj

2 =

=

b′∑
j=1

�
1− j

b′′+1

�
λ j q

− wj

2 +

b′′∑
j=b′+1

�
1− j

b′′+1

�
λ j q

− wj

2 ¾

¾
b′∑

j=1

�
1− j

b′′+1

�
λ j q

− wj

2 −
b′′∑

j=b′+1

���1− j

b′′+1

���|λ j |q−
wj

2 ¾

¾
b′∑

j=1

�
1− j

b′′+1

�
λ j q

− wj

2 −ǫ.

We now let tend b′′ to +∞ and get
b′∑

j=1

λ j q
−wj

2 − ǫ¶ 1
2

. Then, passing to

the limit when b′→∞, we see that the first part of the corollary is true.

To prove the statement under the second condition we use the same

trick. We take b′ ∈N such that
b

b′+1
< ǫ. Then we apply Theorem .

with b= b′ and notice that the sum only decreases when we drop the

part
b′∑

j=b+1

�
1− j

b′+1

�
λ j q

− wj

2 since λ j¾0:

1
2
¾

b∑
j=1

�
1− j

b′+1

�
λ j q

−wj

2 ¾
b∑

j=1

�
1− j

b′+1

�
λ j q

−wj

2 ¾
b′∑

j=1

(1−ǫ)λ j q
−wj

2

This gives the second part of the corollary.

Corollary .. Any asymptotically exact family of L-functions, satis-

fying λ j¾0 for any j, is asymptotically very exact.

Remark .. The statements of both of the corollaries are obviously

still true if one assumes that λ j¾0 for all but a finite number of j ∈N.

Remark .. Using Theorem . one can give another proof of the

basic inequality for asymptotically very exact families of L-functions. In-

deed, all the measures defined by (.) are non-negative. Thus the limit

measure µlim must have a non-negative density at any point, in particular

at x=0. This gives us exactly the basic inequality. In this way we get an

interpretation of the difference between the right hand side and the left

hand side of the basic inequality as “the asymptotic number of zeroes of

L j(s), accumulating at s=
w
2

”.
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In fact, using the same reasoning as before, we get a family of in-

equalities (which are interesting when not all the coefficients λ f are non-

negative):
∞∑

k=1

λk cos(kx)q−
wk

2 ¶
1
2

for any x∈R.

6.2. Basic inequality for zeta functions

We have noticed before that even in the case of L-functions we do not

get complete results unless we assume that our family is asymptotically

very exact or all the coefficients λ f are positive. While working with

zeta functions we face the same problem. However, we will deal with it

in a different way for no general lower bound on the sums of the type

(.) seems to be available and such a lower bound would definitely

be necessary since zeta functions are products of L-functions both in

positive and in negative powers.

Theorem .. Let {ζk(s)} be an asymptotically exact family of zeta

functions. Then for any real s with
we

2
< s<

we+1

2
we have:

−
we∑

i=0

δi

qs−i/2−ǫi

¶ − 1

log q

ζ′
lim

(s)

ζlim(s)
¶

we∑
i=0

δi

qs−i/2+ǫi

,

or, more explicitly,

−
we∑

i=0

δi

qs−i/2−ǫi

¶
∞∑

j=1

λ j q
−sj ¶

we∑
i=0

δi

qs−i/2+ǫi

.

Proof. First of all, Proposition . implies that it is enough to prove

the inequality in the case when ζk(s)=ζe,k(s) and w=we.

Let us write the Stark formula from Proposition .:

1

log q

ζ′(s)

ζ(s)
=

w∑
i=0

ǫi

di∑
j=1

1
qsρij −1

.

We notice that all the terms are real for real s and

R(r, θ ) = Re
reiθ

1− reiθ =
r cosθ − r2

1−2r cosθ + r2 .

Applying this relation we see that

1

log q

ζ′(s)

ζ(s)
=

w∑
i=0

ǫi

di∑
j=1

R(qi/2−s, θij),

where ρkj= q−
k

2 eiθkj .
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For 0< r<1 we have the bounds on R(r, θ ):

− r
1+ r
¶ R(r, θ ) ¶

r
1− r

.

For ǫ∈ {±1} this implies

− 1

1/r+ǫ
¶ ǫR(r, θ ) ¶

1

1/r+ǫ
.

From this we deduce that for s with
w
2
< s<

w+1
2

the following

inequality holds

−
w∑

i=0

di

qs−i/2 −ǫi

¶
−1

log q

ζ′(s)

ζ(s)
¶

w∑
i=0

di

qs−i/2+ǫi

. (.)

The next step is to use Theorem .. For any s in the interval
�

w
2

,
w+1

2

�

it gives that

lim
k→∞

−1

edk log q
·
ζ′

k
(s)

ζk(s)
=

∞∑
j=1

λ j q
− sj

2 .

Dividing (.) by edk, passing to the limit and using the previous equality

we get the statement of the theorem.

Corollary .. 1) If ǫwe
= 1 and either the family is asymptotically

very exact or λ j¾0 for all j then

∞∑
j=1

λ j q
−we j

2 ¶
we∑

i=0

δi

q(we−i)/2+ǫi

2) If ǫwe
=−1 and either the family is asymptotically very exact or

λ j¶0 for all j then

−
we∑

i=0

δi

q(we−i)/2−ǫi

¶
∞∑

j=1

λ j q
−we j

2 .

Proof. Let us suppose that ǫwe
= 1 (the other case is treated sim-

ilarly). For an asymptotically very exact family for any ǫ > 0 we can

choose N > 0 such that
∞∑

j>N

|λ j |q−
we j

2 < ǫ. Thus both for a very exact

family and for a family with λ j¾0 for all j we have

N∑
j=1

λ j q
−sj ¶

we∑
i=0

δi

qs−i/2+ǫi

+ǫ

for any real s with
we

2
< s<

we+1

2
. Passing to the limit when s→ we

2
we

get the statement of the corollary.
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Corollary .. Any asymptotically exact family, such that

ǫwe
sign(λ j) = 1

for any j, is asymptotically very exact.

Remark .. Though the Corollary . implies the Corollary ., the

basic inequality for L-functions given by Theorem . is different from the

one obtained by application of Theorem ..

6.3. Examples

Example . (Curves over finite fields). For curves over finite fields

we obtain once again the classical basic inequality from []:
∞∑

j=1

2λ j q
− j

2 =

∞∑
m=1

mφm

qm/2−1
¶ 1.

Of course, this is not an interesting example for us, since we used this

inequality as our initial motivation.

Example . (Varieties over finite fields). In a similar way, for va-

rieties over finite fields we get the inequality from [, (.)]:
∞∑

m=1

mφm

q(2d−1)m/2−1
¶ (q(2d−1)/2−1)

�
β1

2
+
∑
2|i

βi

q(i−1)/2+1
+
∑
2∤i

βi

q(i−1)/2−1

�
.

With more efforts one can reprove most (if not all) of the inequalities

from [, (.)] in our general context of zeta functions, since the main

tools used in [] are the explicit formulae. However, we do not do it

here as for the moment we are unable see any applications it might have

to particular examples of zeta functions.

Example . (Elliptic curves over function fields). The case of

asymptotically bad families is trivial: we do not obtain any interesting

results here since all λ j=0.

Let us consider the base change case. Let us take an asymptotically

very exact family of elliptic curves obtained by a base change (by Propo-

sition . any family obtained by a base change is asymptotically very

exact, provided charFq 6=2, 3). We can apply Corollary . to obtain that
∞∑

j=1

λ j q
− j/2¶

1
2

. Using (.), one can rewrite it using φv,m as follows:

∑
v,m

mdvφv,m(αm
v
+ ᾱm

v
)q−mdv

1− (αm
v
+ ᾱm

v
)q−mdv

¶
ν+4

2

(here ν = lim
i→∞

nEi/Ki

gKi

).
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7. Open questions and further research directions

In this section we would like to gather together the questions which

naturally arise in the connection with the previous sections. Let us start

with some general questions. First of all:

Question .. To which extent the formal zeta and L-functions de-

fined in Section  come from geometry?

One can make it precise in several ways. For example, it is possible

to ask whether any L-function of weight w, such that L (u) has integral

coefficients is indeed the characteristic polynomial of the Frobenius au-

tomorphism acting on the w-th cohomology group of some variety V/Fq.

A partial answer to this question when w=1 is provided by the Honda––

Tate theorem on abelian varieties [].

Question .. Describe the set {(λ1, λ2, …)} for asymptotically ex-

act (very exact) families of zeta functions (L-functions).

There are definitely some restrictions on this set, namely those given

by various basic inequalities (Theorems . and ., Remark .). It

would be interesting to see whether there are any others. We emphasize

that the problem is not of arithmetic nature since we do not assume

that the coefficients of polynomials, corresponding to L-functions, are

integral. It would be interesting to see what additional restrictions the

integrality condition on the coefficients of L (u) might give. Note that,

using geometric constructions, Tsfasman and Vlădu̧t [] proved that the

sets of parameters λ f , satisfying λ f ¾0 for any f and the basic inequality

are all realized when q is a square and w = 1. This implies the same

statement for L-functions with arbitrary q and w. However, our new

L-function might no longer have integral coefficients.

Question .. How many asymptotically good (very good) families

are there among all asymptotically exact (very exact) families?

The “how many” part of the question should definitely be made more

precise. One way to do this is to consider the set Vg of the vectors of

coefficients of polynomials corresponding to L-functions of degree d and

its subset Vd( f , a, b) consisting of the vectors of coefficients of polyno-

mials corresponding to L-functions with a<
Λ f

d
< b. A natural question

is whether the ratio of the volume of Vd( f , a, b) to the volume of Vg has

a limit when d→∞ and what this limit is. See [] for some information

about Vd. The question is partly justified by the fact that it is difficult

to construct asymptotically good families of curves. We would definitely

like to know why.
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Let us now ask some questions concerning the concrete results on

zeta and L-functions proven in the previous sections.

Question .. Is it true that the generalized Brauer––Siegel Theo-

rem . holds on the critical line for some (most) asymptotically very

exact families?

It is sure that without the additional arithmetic conditions on the

family the statement does not hold. The most interesting families here

are the families of elliptic curves over function fields considered in Sub-

section . due to the arithmetic applications. An example of a family

of elliptic surfaces for which the statement holds is given in []. It is

interesting to look at some other particular examples of families of curves

over finite fields where the corresponding zeta functions are more or less

explicitly known. These include the Fermat curves [] and the Jacobi

curves [].

Some examples we know to support the positive answer to the above

question come from the number field case. It is known that there exists

a sequence {di} in N of density at least
1
3

such that

lim
i→∞

logζ
Q(
p

di )

�
1
2

�

log di

= 0

(cf. []). The techniques of the evaluation of mollified moments of Dirich-

let L-functions used in that paper is rather involved. It would be inter-

esting to know whether one can obtain analogous results in the function

field case. The related questions in the function field case are studied

in []. It is not clear whether the results on the one level densities for

zeroes obtained there can be applied to the question of finding a lower

bound on
log |ci|

di
for some positive proportion of fields (both in the num-

ber field and in the function field cases).

Question .. Prove the generalized Brauer––Siegel Theorem .

with an explicit error term.

This was done for curves over finite fields in [] and looks quite

feasible in general. It is also worth looking at particular applications that

such a result might have, in particular one may ask what bounds on the

Euler––Kronecker constants it gives.

Question .. How to characterize measures corresponding to asymp-

totically very exact families?

This was done in [] for families such that λ f ¾ 0 for all f . The

general case remains open.
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Question .. Estimate the error term in Theorem ..

As it was mentioned before, in the case of elliptic curves over Fq(t)

the estimates were carried out in [].

Question .. Find explicit bounds on the orders of zeroes of L-func-

tions on the line Re s=
w

2
.

The Corollary . gives that the ratio
ri

di
→0 for asymptotically very

exact families (here ri is the multiplicity of the zero). In a particular case of

elliptic curves over a fixed function field Brumer in [] gives a bound which

grows asymptotically slower than the conductor. Using explicit formulae

with a proper choice of test functions, it should be possible to give such

upper bounds for families obtained by a base change if not in general.

Let us finally ask a few more general questions.

Question .. How can one apply the results of this paper to get the

information about the arithmetic or geometric properties of the objects

to which L-functions are associated?

We carried out this task (to a certain extent) in the case of curves

and varieties over finite fields and elliptic curves over function fields.

Additional examples are more than welcome.

The last but not least:

Question .. What are the number field analogues of the results

obtained in this paper?

It seems that most of the results can be generalized to the frame-

work of the Selberg class (as described, for example, in [, Chapter ]),

subject to imposing some additional hypothesis (such as the Generalized

Riemann Hypothesis, the Generalized Ramanujan Conjectures, etc.). Of

course, one will have to overcome quite a lot of analytical difficulties on

the way (compare, for example, [] and []).

We hope to return to this interesting and promising subject later on.
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des varíetés sur un corps fini, J. Reine Angew. Math.  (), ––.

13. P. Lebacque and A. Zykin, On logarithmic derivatives of zeta functions in fam-

ilies of global fields, International Journal of Number Theory.  (), no. ,

––.
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21. M. A. Tsfasman and S. G. Vlăduţ, Asymptotic properties of zeta-functions, J.

Math. Sci.  (), no. , ––.
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Uniform distribution of zeroes of L-functions

of modular forms

Abstract. We prove under GRH that zeros of L-functions of modu-

lar forms of level N and weight k become uniformly distributed on the

critical line when N+k→∞.

1. Introduction

It is well known that zeroes of L-functions contain an important in-

formation about the arithmetic properties of the objects to which these

L-functions are associated. The question about the distribution of these

zeroes on the critical line was studied by many authors. This problem

can be looked upon from many angles (the proportion of zeroes on the

critical line, low zeroes, zero spacing, etc.).

In this paper we study the distribution of zeroes of L-functions on the

critical line when we let vary the modular form to which the L-function

is associated. The same question was considered by S. Lang in [] and

M. Tsfasman and S. Vlădu̧t in [] for the Dedekind zeta function of num-

ber fields.

Let f (z) be a holomorphic cusp of weight k= k f for the group Γ0(N)

such that f (z)=
∞∑

n=1

ann(k−1)/2e2πinz is its normalized Fourier expansion

at the cusp ∞. We suppose that f (z) is a primitive form in the sense of

Atkin––Lehner [] (it is a new form and a normalized eigen form for all

Hecke operators), so L f (s) can be defined by the Euler product

L f (s) =
∏
p|N

(1−ap p−s)−1
∏
p ∤N

(1−ap p−s
+ p−2s)−1.

We denote by αp and ᾱp the two conjugate roots of the polynomial

1− ap p−s
+ p−2s. Deligne has shown (see []) that |αp|= |ᾱp|= 1 for

p ∤ N (the Ramanujan––Peterson conjecture). On the other hand, one

knows (see []) that for p |N we have |ap|¶1.

If we define the gamma factor by

γ f (s) = π−s
Γ

� s+ (k−1)/2

2

�
Γ

� s+ (k+1)/2

2

�
= ck(2π)−s

Γ

�
s+

k−1
2

�

Alexey Zykin, Uniform distribution of zeroes of L-functions of modular forms, in: Al-

gorithmic arithmetic, geometry, and coding theory, Contemporary Mathematics, vol. ,

Amer. Math. Soc., Providence, RI, , ––.



. Proof of Theorem . 

with ck = 2(3−k)/2pπ, then the function Λ(s)= N s/2γ f (s)L f (s) is entire

and satisfies the functional equation Λ(s)=wΛ(1− s) with w=±1. The

Generalized Riemann Hypothesis (GRH) for L-function of modular forms

states that all the non-trivial zeroes of these L-functions lie on the critical

line Re s=
1

2
. Throughout the paper we assume that GRH is true.

The analytic conductor q f (see []) is defined as

q f = N
�

k−1

2
+3

��
k+1

2
+3

�
∼ Nk2

4
,

when k→∞. We will use the last expression (or, more precisely, its log-

arithm minus a constant) as a weight in all the zero sums in the paper.

To each f (z) we can associate the measure

∆ f :=
2π

log q f

∑
L f (ρ)=0

δt(ρ),

where t(ρ)=
1
i

�
ρ− 1

2

�
and ρ runs through all non-trivial zeroes of

L f (s); here δa denotes the atomic (Dirac) measure at a. Since we suppose

that GRH is true, ∆ f is a discrete measure on R. Moreover, it can easily

be seen that ∆ f is a measure of slow growth (see below).

Our main result is the following one:

Theorem .. Assuming GRH, for any family { f j(z)} of primitive

forms with q f j
→∞ the limit

∆ = lim
j→∞
∆ j = lim

j→∞
∆ f j

exists in the space of measures of slow growth on R and is equal to the

measure with density 1 (i. e. dx).

2. Proof of Theorem .

Our method of the proof will, roughly speaking, follow that of [],

where a similar question is treated in the case of Dedekind zeta functions.

It will even be simplier in our case due to the fact that the family we

consider is “asymptotically bad”.

Let us recall a few facts and definitions from the theory of distribu-

tion. We will use [] as our main reference. Recall that the Schwartz

space S =S (R) is the space of all real valued infinitely differentiable

rapidly decreasing functions on R (i. e. φ(x) and any its derivative go

to 0 when |x|→∞ faster then any power of |x|). The space D(R) is de-

fined to be the space of all real valued infinitely differentiable functions

with compact support on R. Both S (R) and D(R) are equipped with the

structures of topological vector spaces.
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The space D ′ (resp. S ′), topologically dual to D (resp. S ) is called

the space of distribution (resp. tempered distributions). We also define

the space of measures M as the topological dual of the space of real

valued continuous functions with compact support on R. The spaceM
contains a cone of positive measuresM+, i. e. of measures taking positive

values on positive functions. One has the following inclusions: S ′⊂D ′
and M+⊂M ⊂D ′. The intersection Msl =M ∩S ′ is called the space

of measures of slow growth. A measure µ of slow growth can be charac-

terized by the property that for some positive integer k the integral

+∞Í

−∞

(x2
+1)−kdµ

converges (see [, Thm. VII of Ch. VII]). In particular, from this criterion

and the fact that the series
∑
ρ 6=0,1

|ρ|−2 converges ([, Lemma .]), we

see that ∆ f is a measure of slow growth for any f .

Finally, we note that the Fourier transform ˆ is defined on S and

S ′ and is a topological automorphism on these spaces. D is known to

be dense in S and so D̂ is also dense in S = Ŝ . To check that µ is a

measure of slow growth it is enough to check that it is defined on a dense

subset and that it is continuous on this dense subset in the topology

of S . In the same way, to check that a sequence of measures of slow

growth converges to a measure of slow growth it is enough to check its

convergence on a dense subset to a measure continuous on this dense

subset. This follows from the definition of measures as linear functionals.

Our main tool will be a version of Weil explicit formula for L-func-

tions of modular forms proven in [, I.] or in [, Theorem .] (in the

last source some extra conditions on test functions are imposed).

Suppose F ∈S (R) satisfies for some ǫ>0 the following condition

|F(x)|, |F ′(x)| ≪ ce

�
− 1

2
+ǫ

�
|x|

as |x| → ∞. (.)

Let

Φ(s) :=

∞Í

0

F(x)e

�
s− 1

2

�
x
dx = F̂(t),

where s=
1
2
+ it. The next proposition gives us the explicit formula that

we need to relate the sum over zeroes to the sum of coefficient of mod-

ular forms:



. Proof of Theorem . 

Proposition .. Let f (z) be a primitive form of level N and weight k.

Then the limit ∑
L f (ρ)=0

Φ(ρ) = lim
T→∞

∑
L f (ρ)=0

|ρ|<T

Φ(ρ)

exists and we have the following formula:
∑

L f (ρ)=0

Φ(ρ) = −
∑
p,m

b(pm)(F(m log p)+ F(−m log p))
log p

pm/2
+

+ F(0)(log N−2 log(2π))+
1
π

+∞Í

−∞

Φ
�

1

2
+ it

�
+Φ

�
1

2
− it

�

2
·ψ

�
k
2
+ it

�
dt,

whereψ(s)=Γ′(s)/Γ(s), b(pm)=(ap)m if p |N and b(pm)=(αp)m
+(ᾱp)m

otherwise.

Taking a subsequence of { f j } we can assume that the limit

α = lim
j→∞

log N j

log N j+ log k j

exists. We will check the convergence of measures on D̂. From the above

discussion this is enough to prove the result. Let us take any φ ∈ D̂,

φ = F̂, F ∈ D. We have φ(t)= Φ
�

1
2
+ it

�
. The function F satisfies the

condition (.), so we can apply the explicit formula to it. We fix φ(t)

and let vary f j Then, we get the equality when j→∞.

∆(φ) = 2πF(0)α+2

+∞Í

−∞

φ(t)+φ(−t)

2
· lim

j→∞

ψ
�

k j

2
+ it

�

log N j+ log k j
dt, (.)

since |b(pm)|¶2 and the integral is uniformly convergent as φ(t)∈S .

The limit under the integral sign can be evaluated using the Stirling

formula ψ(s)= log s+O
�

1

|s|
�

(see [, p. ]). This gives us

lim
j→∞

ψ
�k j

2
+ it

�

log N j + log k j
=

1
2

(1−α).

But

+∞Í

−∞

ψ(t)dt=2πF(0) and so the right hand side of (.) equals

2πF(0)α+2πF(0)(1−α) = 2πF(0) =

+∞Í

−∞

φ(t)dt.

This concludes the proof of the theorem.
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Corollary .. Any fixed interval around s =
1
2

contains zeroes of

L f (s) if q f is sufficiently large.

Remark .. One can prove a similar equidistribution statement for

L-functions of bounded degree in the Selberg class, assuming suitable

conjectures (like the Generalized Riemann Hypothesis). It is an interest-

ing question how zeroes of L-functions are distributed if the degree of

these L-functions grows with the analytic conductor. Some examples of

non-trivial distributions of zeroes for Dedekind zeta functions are con-

sidered in [].
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3. H. Iwaniec and E. Kowalski, Analytic number theory, American Mathematical

Society Colloquium Publications, vol. , AMS, Providence, RI, .

4. S. Lang, On the zeta function of number fields, Invent. Math.  (),

––.

5. S. Lang, Algebraic number theory, Graduate Texts in Mathematics, vol. ,

Springer-Verlag, New York, .

6. J.-F. Mestre,Formules explicites et minorations de conducteurs de varíetés
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On the number of rational points of Jacobians

over finite fields

(whith P. Lebacque)

Abstract. We prove lower and upper bounds for the class numbers

of algebraic curves defined over finite fields. These bounds turn out

to be better than most of the previously known bounds obtained us-

ing combinatorics. The methods used in the proof are essentially those

from the explicit asymptotic theory of global fields. We thus provide a

concrete application of effective results from the asymptotic theory of

global fields and their zeta functions.

1. Introduction

1.1. Notation

We introduce the following notation:

X a smooth projective absolutely irreducible curve over Fq ,

g the genus of X ,

K the function field of X ,

Φq f or B f the number of places of K of degree f ,

h the class number of X (the number of Fq-points of Jac(X )),

ZX (T) the zeta function of X which is a rational function of T ,

ωi

p
q the inverse roots of the numerator of ZX (T),

κ the residue of ZX (q−s)=ζX (s) at s=1,

log the Neperian logarithm loge.

By a curve we always mean a smooth projective absolutely irreducible

curve.

1.2. Existing lower bounds for the class number

Our goal is to provide estimates for the number of rational points on

the Jacobian of a smooth projective curve that use the information on the

number of points on this curve defined over Fq or over its extensions. The

Philippe Lebacque, Alexey Zykin, On the number of rational points of Jacobians over

finite fields, Acta Arithmetica,  (), no. , ––.



 Jacobians over finite fields

starting point for all such estimates is the interpretation of the class num-

ber as the value at 1 of the numerator of the zeta function of the curve.

In order to estimate it, one uses properties of the zeta function such as

its functional equation, and the Riemann Hypothesis (Weil bounds).

From the work of Weil, we know that the class number h of a smooth

projective absolutely irreducible curve X of genus g defined over Fq is

bounded as follows:

(
p

q−1)2g ¶ h ¶ (
p

q+1)2g.

Considerable effort has been devoted to sharpening these bounds. Let

us cite some work in this direction. Lachaud and Martin-Deschamps []

first obtained the lower bound

h ¾ hLMD = qg−1 (q−1)2

(q+1)(g+1)
,

using a formula which is a consequence of the functional equation for

the zeta function:

h =

g−1∑
n=0

An+

g−2∑
n=0

qg−1−n An

g∑
i=1

|1−ωi

p
q|2

,

where An is the number of effective divisors of degree n on X . Ever

since, methods from combinatorics were used to give good bounds for

the numerator and the denominator of this fraction.

In [], [], Ballet, Rolland, and Tutdere used this approach in order

to prove rather elaborate lower bounds on h. Some of these bounds turn

out to be asymptotically optimal when g→∞, meaning that they con-

verge to the lower bound from the generalized Brauer––Siegel theorem

for function fields ([], see also Remark .). The best of their lower

bounds is given by the following theorem:

Theorem . (Ballet––Rolland––Tutdere). Let X/Fq be a curve de-

fined over Fq of genus g¾2 and of class number h. Let D1, D2 be finite sets

of integers, (ℓr)r∈D1
, (mr)r∈D2

be families of integers such that:

1) D1⊆{1, …, g−1};

2) D2⊆{1, …, g−2};

3) for any r∈D1, Φqr ¾1;

4) for any r∈D2, Φqr ¾1;

5) lr¾0 and
∑

r∈D1

rℓr¶ g−1;

6) mr¾0 and
∑

r∈D2

rmr¶ g−2.



. Introduction 

Then h¾hBRT with

hBRT =
(q−1)2

(g+1)(q+1)−Φq

� ∏
r∈D1

�Φqr +ℓr

ℓr

�
+

+ qg
∏

r∈D2

��
qr

qr−1

�φqr

−Φqr

�
Φqr +mr

mr

� q−rÍ

0

(q−r− t)mr

(1− t)Φqr+mr+1 dt

��
.

From now on we denote by hBRT the best possible lower bound from

this theorem, that is, the one with an optimal choice of D1, D2, (ℓr)r∈D1
,

and (mr)r∈D2
.

In a recent article dealing with estimates for the number of points

on general abelian varieties, Aubry, Haloui, and Lauchaud [] obtained

certain lower bounds on class numbers that can be very sharp when

the curve in question has many rational points compared to its genus.

However, these bounds are all rather poor from the asymptotic point of

view when g→∞. Let us recall their results concerning the Jacobian of

curves.

Theorem . (Aubry––Haloui––Lachaud). For a smooth absolutely ir-

reducible projective curve X defined over Fq of genus g¾ 2 and of class

number h we have:

1) h¾M(q)g

�
q+1+

Φq− (q+1)

g

�g

with

M(q) =
e log x1/x−1

x1/x−1
, x =

�p
q+1
p

q−1

�2

.

2) h¾
q−1

qg−1

��Φq +2g−2

2g−1

�
+

2g−1∑
r=2

Φqr

�Φq+2g−2− r

2g−1− i

��
.

3) If Φq¾ g(
p

q−1)+1 then

h ¾
�
Φq+ g−1

g

�
− q

�Φq+ g−3

g−2

�
.

4) h¾
(q−1)2

(g+1)(q+1)−Φq

��Φq + g−2

g−2

�
+

g−1∑
r=0

qg−1−1
�
Φq+ r−1

r

��
.

We denote by hAHL the best possible lower bound for h given by ()––

() of this theorem. We remark that the estimate (3) can be very sharp

when g is small and Φq is large. We will come back to that in § .
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.. The aim of this paper is to show how the Mertens theorem

and the explicit Brauer––Siegel theorem lead to improvements of these

bounds in many cases, most notably when g is large. This is done in § 

(Corollary .). To do so we use the asymptotic theory of global fields,

and more precisely the technique of explicit formulae. The third section

is devoted to numerical experiments. We compare the bounds in several

examples provided by recursive asymptotically good towers of function

fields. Finally, in the fourth section we discuss further research directions

and open problems.

2. Explicit formulae and their link to class numbers

2.1. Explicit formulae

Our starting point is the Mertens theorem [] for curves and its re-

lation to the generalized Brauer––Siegel theorem. Our exposition differs

slightly from []: we take the opportunity to sharpen (and sometimes

correct) the corresponding bounds.

Let us recall Serre’s explicit formulae from [].

Theorem . (Explicit formula). For any sequence (vn) such that

the radius of convergence ρ of the series
∑

vntn is strictly positive, define

ψm,v (t)=
∞∑

n=1

vmntmn, and ψv (t)=ψ1,v(t). Then for t< q−1ρ, we have the

explicit formula

∞∑
f=1

fΦq fψ f ,v (t) = ψv (t)+ψv(qt)−
2g∑
j=1

ψv (
p

qω j t).

We choose N ∈N, and take vn=1/n if n¶N and 0 otherwise. Apply-

ing Theorem . with t= q−1, we obtain the identity

S0(N) = S1(N)+S2(N)+S3(N),

where

S0(N) =
N∑

n=1

n−1q−n
∑
m|n

mΦqm =

N∑
f=1

1

fq f
|X(Fq f )|,

S1(N) =
N∑

n=1

1
n

, S2(N) =
N∑

n=1

1
nqn , S3(N) = −

2g∑
j=1

N∑
n=1

1
n

(q−1/2ω j)
n.
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We transform it in order to make the desired quantities appear. For

any N¾1,

S0−
N∑

f=1

Φq f log

�
q f

q f −1

�

︸ ︷︷ ︸
ǫ0(N)

+

N∑
f=1

Φq f log

�
q f

q f −1

�
=

= S1+S2− log
q

q−1︸ ︷︷ ︸
ǫ2(N)

+ log
q

q−1
+

+S3− log(κ log q)+ log
q

q−1︸ ︷︷ ︸
ǫ3(N)

+ log(κ log q)− log
q

q−1
.

To get bounds for h we will not need estimates on ǫ0(N) and ǫ2(N),

but they are useful for proving the Mertens theorem recalled later.

Lemma .. We have the following bounds for ǫi(N):

− c1(q)

NqN/2
− c2(q)g

Nq3N/4
¶ ǫ0(N) ¶ 0,

− 1

(q−1)(N+1)qN ¶ ǫ2(N) ¶ 0, 0 ¶ |ǫ3(N)| ¶ 2g

(
p

q−1)(N +1)qN/2
,

with

c1(q) =
2q(q+1)

(q−1)2 ¶ 12 and c2(q) =
2q

q−1

� p
q

p
q−1

+
q3/2

q3/2−1

�
¶ 20.

Proof. The following inequalities hold for |x|>1 and N>0:

���log

�
x

x−1

�
−

N∑
n=1

1
nxn

��� =
���

∞∑
n=N+1

1
nxn

��� ¶ 1

(N+1)|x|N+1

∞∑
n=0

1

|x|n ¶

¶
1

(N+1)|x|N (|x|−1)
.

This implies the bounds for ǫ2(N).

The one for ǫ3(N) is derived from the classical formula [, Corol-

lary ..]

log(κ log q)− log
q

q−1
=

2g∑
i=1

log

�
1−

ω jp
q

�
.
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It gives

|ǫ3(N)| =
���−

2g∑
j=1

N∑
n=1

1
n

(q−1/2ω j)
n− log(κ log q)+ log

q

q−1

��� =

=

���
2g∑
j=1

�
− log

�
1−

ω jp
q

�
−

N∑
n=1

1
n

�
ω jp

q

�n����,

and since |ω j | = 1, we have

|ǫ3(N)| ¶
2g∑
j=1

1

(N+1)
p

qN |pq−ω j |
¶

2g

(
p

q−1)(N+1)qN/2
.

We finally estimate ǫ0(N) along the lines of [, proof of Lemma ].

We first transform the expression for S0:

S0(N) =
N∑

f=1

fΦq f

[N/ f ]∑
m=1

q− fm( fm)−1
=

N∑
f=1

Φq f

[N/ f ]∑
m=1

1

q fmm
.

Thus,

ǫ0(N) = S0(N)−
N∑

f=1

Φq f log
q f

q f −1
=−

N∑
f=1

Φq f

�
log

q f

q f −1
−

[N/ f ]∑
m=1

1

q fmm

�
=

= −
N∑

f=1

Φq f

∞∑
m=[N/ f ]+1

1

q fmm
.

As
1
m
¶

1

[N/ f ]+1
, we get

0 ¶ −ǫ0(N) ¶
N∑

f=1

Φq f

([N/ f ]+1)q f [N/ f ](q f −1)
.

To estimate Φq f we use Φq f ¶
q f
+1+2gq f /2

f
. Thus

0 ¶ −ǫ0(N) ¶
1
N

N∑
f=1

q f
+1+2gq f /2

(q f −1)q f [N/ f ]
.
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We split the last sum in two, using the fact that for f > [N/2] we have

[N/ f ]=1, and for f ¶ [N/2] we have f [N/ f ]¾N− f :

−ǫ0(N) ¶
1

N

[N/2]∑
f=1

q f
+1+2gq f/2

qN− f (q f −1)
+

1

N

N∑
f=[N/2]+1

q f
+1+2gq f/2

q f (q f −1)
¶

¶
1

N

�[N/2]∑
f=1

q f
+1

q f −1
q f−N

+

N∑
f=[N/2]+1

q f
+1

q f −1
q− f

�
+

+
2g

N

�[N/2]∑
f=1

q f

q f −1
q f /2−N

+

N∑
f=[N/2]+1

q f

q f −1
q−3 f /2

�
¶

¶
q+1

(q−1)N

�[N/2]∑
f=1

q f−N
+

N∑
f=[N/2]+1

q− f

�
+

+
2gq

N(q−1)

�[N/2]∑
f=1

q f /2−N
+

N∑
f=[N/2]+1

q−3 f /2

�
¶

¶
(q+1)(q−[N/2]−1

+q−N+[N/2])

(q−1)N(1−q−1)
+

2gq

N(q−1)

�
q−N+[N/2]/2

1−q−1/2
+

q−3([N/2]+1)/2

1−q−3/2

�
¶

¶
2(q+1)q

(q−1)2 ·
1

NqN/2
+

2q

q−1

� p
q

p
q−1

+
q3/2

q3/2−1

�
g

Nq−3N/4
.

Remark .. The bound for ǫ0(N) provides a correction to

[, Lemma ], and the bound for ǫ3(N) corrects Lemma  there. It can

be easily checked that these bounds are also valid in the more general

situation of varieties over finite fields treated in [].

2.2. Bounds for the class number

Using the calculations from the previous section and applying the

class number formula

κ log q =
hq1−g

q−1
,

we get the following theorem.

Theorem .. Let X be a smooth projective absolutely irreducible

curve defined over Fq of class number h. Then h is given by the following

formula valid for any N¾1:

log h = g log q+
N∑

f=1

1

fq f
|X(Fq f )|−

N∑
n=1

1+q−n

n
−ǫ3(N),
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or equivalently,

log h = g log q+
N∑

r=1

�
Φqr

⌊N/r⌋∑
f=1

1

fqrf

�
−

N∑
n=1

1+q−n

n
−ǫ3(N),

where ǫ3(N) satisfies |ǫ3(N)|¶ 2g

(
p

q−1)(N+1)qN/2
.

Corollary . (Bounds for the class number). The number of ratio-

nal points h on the Jacobian of X satisfies hmin(N)¶h¶hmax(N), where

hmin(N) = qg exp

� N∑
f=1

1

fq f
|X(Fq f )|−

N∑
n=1

1+q−n

n
− 2g

(
p

q−1)(N+1)qN/2

�
,

hmax(N) = qg exp

�
N∑

f=1

1

fq f
|X(Fq f )|−

N∑
n=1

1+q−n

n
+

2g

(
p

q−1)(N+1)qN/2

�
.

Remark .. The knowledge of a given (small) number of Φq f ’s al-

lows us, nevertheless, to apply Corollary . for any N . For example, in

the case of lower bounds, one can bound from below the unknown Φq f

by 0, or by the quantities arising from the Weil bounds, depending on

which one is better. We thus get a family of bounds parametrized by N ,

and we can choose the best one.

2.3. Mertens theorem and class numbers

Putting together estimates from Section ., we find once again:

Theorem . (Mertens theorem []). Let X be a smooth projective

absolutely irreducible curve of genus g defined over Fq. Then

N∑
f=1

Φq f log

�
q f

q f −1

�
= log(κ log q)−ǫ0(N)+ǫ2(N)+ǫ3(N)−

N∑
n=1

1
n

.

For any N¾1, we can deduce from this a weaker form of our bound,

which might be easier to compare to Ballet––Rolland––Tutdere’s bound:

log h = g log q+

� N∑
f=1

Φq f log

�
q f

q f −1

��
−

N∑
n=1

1+q−n

n
+ǫ0(N)−ǫ3(N).

Remark .. Theorem . implies that our bounds on h are asymp-

totically optimal. More precisely, recall that a family of curves {Xi} over

Fq of genus gi→∞ is asymptotically exact if the limits

φqr = lim
i→∞

Φqr (Xi)

gi
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exist for all r. For asymptotically exact families of curves the generalized

Brauer––Siegel theorem [] states that

lim
i→∞

log h(Xi)

gi
= log q+

∞∑
r=1

φqr log

�
qr

qr −1

�
.

We see that when gi→∞ and then N →∞, the bounds hmin(N) and

hmax(N) from Corollary . divided by gi converge to the right hand side

of the above equality.

3. Numerical computations

In this section, we compare the lower bound hmin(N) given by The-

orem . with hBRT and hAHL in the situation of recursive towers. We

denote by hLZ the bound from Theorem . for the optimal choice of

N . Such a number N is found by computer-aided calculations where the

missing information on the number of points on a curve X over Fqr is

obtained either from the inequality X(Fqr )¾ X(Fqd ) when d | r, or from

Serre’s bound X(Fqr )¾ qr
+ 1− g⌊2qr/2⌋, depending on which one is

more precise. We follow closely [, Section ].

Recall that a tower of function fields over Fq is an infinite sequence

{Fk/Fq}k∈N of function fields such that for all k the ground field Fq is

algebraically closed in Fk, Fk⊂ Fk+1, and the genus satisfies g(Fk)→∞.

A recursive tower is a tower {Fk} of function fields over Fq such that

F0 =Fq(x0) is a rational function field and Fk+1= Fk(xk+1) where xk+1

satisfy the equation f (xk, xk+1)= 0 for a given polynomial f (X , Y ) in

Fq[X , Y ].

3.1. The first tower of Garcia––Stichtenoth

Assume that qr is a square, and consider the tower {Hk}=H /Fqr

defined recursively by the polynomial

f (X , Y ) = Y qr/2

X qr/2−1

+Y − X qr/2 ∈ Fq[X , Y ].

We also consider the recursive tower {Fk}=F/Fq of function fields de-

fined by the same polynomial starting with the rational function field

Fq(x0). The base change of Fk to Fqr gives Hk.

We compare the numerical estimates from [, Section .] with what

we obtain using our bound hLZ. We take q= 2, r= 2 and consider the

fields H2, H3, and H4. Note an error in [, Section .] where for k= 3

the genus is erroneously taken to be equal to 14 instead of 13 (this was
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pointed out by Julia Pieltant). Recall that B1(Hk) denotes the number of

F4-points of the curve corresponding to Hk.

Step k g(Hk) B1(Hk) hBRT hAHL hLZ N

      

               

   1.43×1025 0.075×1025 4.149×1025 

Here is a similar comparison for q=2 and the tower F with B1(Fk)

and B2(Fk) denoting respectively the number of F2- and F4-rational

points of the curve corresponding to Fk:

Step k g(Fk) B1(Fk) B2(Fk) hBRT hLZ N

      

      

             

We notice that our bound is better than the other ones except for

the case of H2/F4 where we cannot beat hAHL. The situation changes,

however, if we use some additional information on the places of H2/F4.

Namely, one can calculate that B2(H2)= 0 and B3(H2)= 24. These val-

ues give the bound hLZ=13 430 reached for N =11. Using MAGMA we

calculated that the exact value of the class number is 16200.

3.2. The tower of Bassa––Garcia––Stichtenoth

Consider the tower {Hk}=H /Fq3 defined recursively by the poly-

nomial

f (X , Y ) = (Y q−Y )q−1
+1+

X q(q−1)

(X q−1−1)q−1 ∈ Fq[X , Y ],

and let {Fk}=F/Fq be the same recursive tower over Fq. We have the

following numerical estimates for the class numbers when q=2, that is,

over F8 for Hk and over F2 for Fk. The value of hBRT bound is taken from

[, Section .].

Step k g(Hk) B1(Hk) hBRT hLZ N

       

   2.556×1013 4.039×1013 

   2.010×1030 5.778×1030 
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Step k g(Fk) B3(Fk) hBRT hLZ N

     

     

         

3.3. Composite towers

The next example is the composite tower {Ek/Fq2 } constructed in

[]. It is obtained as a composite of the tower of Garcia and Stichtenoth

from Section . with a certain explicitly given function field. The details

can be found in [, Proposition .]. The following table combines the

estimates for q2
=4:

Step k g(Ek) B1(Ek) B2(Ek) B3(Ek) hBRT hLZ N

     3.657×1031 23.55×1031 

     9.198×1077 121.02×1077 

For two other composite towers {Ek/F2} and {E′
k
/F8} this time based

on the tower from Section . (see [, Proposition .] for a detailed

description), we get the following numerical data:

Step k g(Ek) B3(Ek) B6(Ek) hBRT hLZ N

       

    1.718×1014 9.173×1014 

Step k g(E′
k

) B1(E′
k

) B2(E′
k

) hBRT hLZ N

    1.002×1017 2.304×1017 

    2.426×1048 13.08×1048 

One more composite tower Ek/F4 introduced in [] (see also [,

Proposition .]) gives us the following table:

Step k g(Ek) B1(Ek) B2(Ek) B3(Ek) hBRT hLZ N

     4.625×1016 18.329×1016 

     2.236×1052 21.39×1052 

For the composite tower Ek/F9 from [, Proposition .] we obtain:

Step k g(Ek) B1(Ek) B2(Ek) hBRT hLZ N

    8.563×1014 18.76×1014 

    7.470×1045 41.64×1045 
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Finally, for yet another composite tower Ek/F4 from [, Proposi-

tion .] we get:

Step k g(Ek) B1(Ek) B2(Ek) hBRT hLZ N

    1.415×1018 3.835×1018 

    3.501×1086 36.23×1086 

In all these examples with one exception we manage to improve on

the previously known bounds.

4. Open questions

Several natural questions arise in connection with the bounds ob-

tained in this paper.

Question .. Is it possible to compare the bounds hBRT, hAHL, and

hLZ?

We would like to have a more or less explicit description of the cases

when each of the bounds is the best one. In the above examples our

bound hLZ always turned out to be better than hBRT. However, we were

not able to establish this fact in general. Comparing the bounds hLZ and

hBRT does not seem to be easy, in particular due to the fact that the

number N corresponding to the optimal hmin(N) can vary significantly

and does not correspond at all to the number of known Φqr ’s.

Question .. Can one improve (or even optimize) the bound hLZ

using different test functions in the explicit formulae?

Oesterlé managed to get the best possible bounds for |X(Fqr )| avail-

able from explicit formulae using the linear programming approach (see

[]). This technique, however, does not seem to be applicable directly

in our case due to the non-linearity of the problem in question. The

optimization seeming difficult, it would be interesting at least to find ex-

amples where a different choice of test functions in the explicit formulae

leads to better bounds than hLZ.

Question .. What are the analogues of the above bounds in the

number field case?

This question seems to be more directly accessible than the previous

ones, since there are both the Mertens theorem and an explicit version of

the Brauer––Siegel theorem available in the number field case [], [].

Nevertheless, analytic components of the proofs will certainly be more

substantial, and the application of the Generalized Riemann Hypothesis

might be necessary in certain cases.
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Pieltant and Michael Tsfasman for helpful discussions.

Bibliography

1. Y. Aubry, S. Haloui, and G. Lachaud, On the number of points on abelian and

Jacobian varieties over finite fields, Acta Arith.  (), ––.

2. S. Ballet and R. Rolland, Lower bounds on the class number of algebraic

function fields defined over any finite field, J. Théor. Nombres Bordeaux 
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On M-functions associated with modular

forms

(with P. Lebacque)

Abstract. Let f be a primitive cusp form of weight k and level

N, let χ be a Dirichlet character of conductor coprime with N, and

let L( f ⊗χ, s) denote either log L( f ⊗χ, s) or (L′/L)( f ⊗χ, s). In this

article we study the distribution of the values of L when either χ or f

vary. First, for a quasi-character ψ : C→C× we find the limit for the

average Avgχψ(L( f ⊗χ, s)), when f is fixed and χ varies through the

set of characters with prime conductor that tends to infinity. Second, we

prove an equidistribution result for the values of L( f ⊗χ, s) by estab-

lishing analytic properties of the above limit function. Third, we study

the limit of the harmonic average Avgh
f
ψ(L( f , s)), when f runs through

the set of primitive cusp forms of given weight k and level N→∞. Most

of the results are obtained conditionally on the Generalized Riemann

Hypothesis for L( f ⊗χ, s).

1. Introduction

1.1. Some history

The study of the distribution of values of L-functions is a classical

topic in number theory. In the first half of th century Bohr, Jessen,

Wintner, etc. intiated a study of the distribution of the values of the

logarithm logζ(s) and the logarithmic derivative (ζ′/ζ)(s) of the Rie-

mann zeta function, when Re s=σ>
1

2
is fixed and Im s=τ∈R varies

[, , , ]. This was later generalized to L-functions of cusp forms and

Dedekind zeta functions by Matsumoto [, , ].

In the last decade Y. Ihara in [] proposed a novel view on the

problem by studying other families of L-functions. His initial motivation

was to investigate the properties of the Euler––Kronecker constant γK

of a global field K, which was defined by him in [] to be the constant

term of the Laurent series expansion of the logarithmic derivative of the

Dedekind zeta function of K, ζ′
K

(s)/ζK (s). The study of L′(1, χ)/L(1, χ)

Philippe Lebacque, Alexey Zykin, On M-functions associated with modular forms,

Moscow Mathematical Journal,  (), no. , ––.
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initiated in [] grew out to give a whole range of beautiful results on

the value distribution of L′/L and log L.

Given a global field K, i. e., a finite extension of Q or of Fq(t), and

a family of characters χ of K Ihara considered in [] the distribution of

L′(s, χ)/L(s,χ) in the following cases:

(A) K is Q, a quadratic extension of Q or a function field over Fq, and

χ are Dirichlet characters on K;

(B) K is a number field with at least two archimedean primes, and χ

are normalized unramified Grössencharacters;

(C) K=Q and χ=χt, t∈R defined by χt(p)= p−it.

The equidistribution results of the type

Avg′χ Φ
� L′(s, χ)

L(s, χ)

�
=

Í

C

Mσ(w)Φ(w)|dw|, ()

(with a suitably defined average in each of the above cases) were proven

for σ=Re s> 1 for number fields, and for σ> 3/4 for function fields,

under significant restrictions on the test function Φ. The function field

case was treated once again in [] by Y. Ihara and K. Matsumoto, with

both the assumptions on Φ and on σ having been relaxed (Φ of at most

polynomial growth and σ>1/2 respectively). The most general results

in the direction of the case (A) were established in [] conditionally

under the Generalized Riemann Hypothesis (GRH) in the number field

case and unconditionally in the function field case (the Weil’s Riemann

hypothesis being valid) for both families L′(s,χ)/L(s,χ) and log L(s,χ).

For Re s>
1
2

Ihara and Matsumoto prove that

Avgχ Φ
� L′(s, χ)

L(s, χ)

�
=

Í

C

Mσ(w)Φ(w)|dw|,

Avgχ Φ(log L(s,χ)) =

Í

C

Mσ(w)Φ(w)|dw|,

for continuous test functions Φ of at most exponential growth. Note that

Avg′ in () is different from the one used in the latter paper, since extra

averaging over conductors is assumed in the former case, the resulting

statements being weaker.

Unconditional results for a more restrictive class of Φ (bounded con-

tinous functions), and with extra averaging over the conductor Avg′, but

still for Re s>
1

2
were established in [] and [] in the log and log′

cases respectively in the situations (A, K=Q) and (C).



 On M-functions associated with modular forms

The above results give rise to the density functions Mσ(z) and a re-

lated function eMs(z1, z2) (which is the inverse Fourier transform of Mσ,

when z2= ¯̄z1, s=σ∈R) both in the log and log′ cases. Under optimal

circumstances (though it is very far from being known unconditionally

in all cases) we have

Mσ(z) = Avgχ δz(L(χ, s)), eMσ(z1, z2) = Avgχ ψz1,z2
(L(χ, s)),

where L(s, χ) is either L′(s,χ)/L(s,χ) or log L(s, χ), δz is the Dirac delta

function, and ψz1,z2
(w)=exp

�
i
2

(z1¯̄w+ z2w)
�

is a quasi-character.

The functions M and eM turn out to have some remarkable properties

that can be established unconditionally. For example, eM has an Euler prod-

uct expansion, an analytic continuation to the left of Re s>1/2, its zeroes

and the “Plancherel volume”
Í

C

| eMσ(z, ¯̄z)|2|dz| are interesting objects to

investigate. We refer to [, ] for an in-depth study of M and eM , as well

as to the survey [] for a thorough discussion of the above topics.

In a recent paper by M. Mourtada and K. Murty [] averages over

quadratic characters were considered. Using the methods from [], they

establish an equidistribution result conditional on GRH. Note that in

their case the values taken by the L-functions are real. In this respect the

situation is similar to the one considered by us in Section  in case we

assume that s is real.

Finally, let us quote a still more recent preprint by K. Matsumoto

and Y. Umegaki [] that treats similar questions for differences of loga-

rithms of two symmetric power L-functions under the assumption of the

GRH. Their approach is based on [] rather than on [], though the

employed techniques are remarkably close to the ones we apply in § .

The results of Matsumoto and Umegaki are complementary to ours, since

the case of Sym1 f = f , which is the main subject of our paper, could not

be treated in [].

1.2. Main results

In this article, we generalize to the case of modular forms the meth-

ods of Ihara and Matsumoto to understand the average values of L-func-

tions of Dirichlet characters over global fields.

Our results are obtained in two different settings. First, we consider

the case of a fixed modular form, while averaging with respect to its

twists by Dirichlet characters. Our results in this setting are fairly com-

plete, though sometimes conditional on GRH. Second, we consider aver-
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ages with respect to primitive forms of given weight and level, when the

level goes to infinity.

Let us formulate our main results. A more thorough presentation

of the corresponding notation can found in Section  and in the corre-

sponding sections.

Let Bk(N) denote the set of primitive cusp forms of weight k and

level N , let f ∈ Bk(N), and let χ be a Dirichlet character of conduc-

tor m coprime with N . Define L( f ⊗χ, s) to be either (L′/L)( f ⊗χ, s)

or log L( f ⊗χ, s), put g( f ⊗χ, s, z)= exp
�

iz

2
L( f ⊗χ, s)

�
. We introduce

lz(n) to be the coefficients of the Dirichlet series expansion g( f , s, z) :=

:= exp
�

iz

2
L( f , s)

�
=

∑
n¾1

lz(n)n−s. Using the relations between the coeffi-

cients of the Dirichlet series expansion L( f , s)=
∑
n¾1

η f (n)n−s, one can

write lz(n)=
∑
x¾1

cN
z,x

(n)η f (x), where cN
z,x

(n) depend only on the level N .

Put cz,x(n)= c1
z,x

(n).

In what follows, the expressions of the form f ≪ g, g≫ f , and

f =O(g) all denote that | f |¶ c|g|, where c is a positive constant. The

dependence of the constant on additional parameters will be explicitly

indicated (in the form≪ǫ,δ,… or Oǫ,δ,…), if it is not stipulated otherwise

in the text. We denote by vp(n) the p-adic valuation of n, writing as well

pk ‖ n if vp(n)= k. We also use the notation := or =: meaning that the

corresponding object to the left or to the right of the equality respectively

is defined in this way.

Our main results are as follows.

Theorem (Theorem .). Assume that m is a prime number and let

Γm denote the group of Dirichlet characters modulo m. Let 0<ǫ<
1

2
and

T , R>0. Let s=σ+ it belong to the domain σ¾ ǫ+
1

2
, |t|¶T , let z and

z′ be inside the disk DR = {z : |z|¶ R}. Then, assuming the Generalized

Riemann Hypothesis (GRH) for L( f ⊗χ, s), we have

lim
m→∞

1

|Γm|
∑
χ∈Γm

g( f ⊗χ, s, z)g( f ⊗χ, s, z′) =

=
∑
n¾1

lz(n)lz′(n)n−2σ
=: eMσ(−¯̄z, z′).

Moreover the convergence is uniform in z, z′ and t in the prescribed range.

Theorem (Theorem .). Let Re s=σ>
1

2
and let m run over prime

numbers. Let Φ be either a continuous function on C with at most expo-
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nential growth, or the characteristic function of a bounded subset of C or

of a complement of a bounded subset of C. Define Mσ as the inverse Fourier

transform of eMσ(z, ¯̄z). Then under GRH for L( f ⊗χ, s) we have

lim
m→∞

1

|Γm|
∑
χ∈Γm

Φ(L( f ⊗χ, s)) =
Í

C

Mσ(w)Φ(w)|dw|.

Theorem (Theorem .). Assume that N is a prime number and that

k is fixed. Let 0<ǫ<
1
2

and T , R>0. Let s=σ+ it belong to the domain

σ¾ǫ+
1

2
, |t|¶T , and z and z′ to the disc DR of radius R. Then, assuming

GRH for L( f , s), we have

lim
N→+∞

∑
f∈Bk (N)

ω( f )g( f , s, z)g( f , s, z′) =
∑

n,m∈N
n−s̄m−s

∑
x¾1

cz,x(n)cz′,x(m),

where ω( f ) are the harmonic weights defined in Section . Moreover the

convergence is uniform on z, z′ and t in the prescribed range.

Finally, let us describe the structure of the paper. In Section  we in-

troduce the notation and some technical lemmas to be used throughout

the paper. The Section  is devoted to the proof of Theorem . on the

mean values of the logarithms and logarithmic derivatives of L-functions

obtained by taking averages over the twists of a given primitive modular

form. Using GRH, we deduce it from Ihara and Matsumoto’s results. In

Section  we study unconditionally the analytic properties of M and eM
functions in the above setting. We then prove an equidistribution re-

sult (Theorem .), which is, once again, conditional on GRH. In Sec-

tion , we consider the average over primitive forms of given weight k

and level N , when N→∞, establishing under GRH Theorem .. The

orthogonality of characters is replaced by the Petersson formula in this

case, which obviously makes the proofs trickier. Finally, open questions,

remarks and further research directions are discussed in Section .
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2. Notation

The goal of this section is to introduce the notation necessary to

state our main results. We also prove some auxiliary estimates to be used

throughout the paper.
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2.1. The g-functions

Let N , k be two integers. We denote by Sk(N) the set of cusp forms of

weight k and level N , and by Snew
k

(N) the set of new forms. For f ∈Sk(N)

we write f (z)=
∞∑

n=1

η f (n)n(k−1)/2e(nz) for its Fourier expansion at the

cusp ∞, with the standard notation e(nz)= e2πinz.

Let Bk(N) denote the set of primitive forms of weight k and level

N , i. e., the set of f nor
= f /η f (1) where f runs through an orthogonal

basis of Snew
k

(N) consisting of eigenvectors of all Hecke operators Tn, so

that the Fourier coefficients of the elements of Bk(N) are the same as

their Hecke eigenvalues. Note that for a primitive form f ∈ Bk(N) all its

coefficients η f (n) are real.

The L-function of a primitive form f ∈ Bk(N) is defined as the Dirichlet

series L( f , s)=
∞∑

n=0

η f (n)n−s. The series converges absolutely for Re s>1,

however, L( f , s) can be analytically continued to an entire function on

C. It admits the Euler product expansion:

L( f , s) =
∏

p

Lp( f , s),

where, for any prime number p,

Lp( f , s) =






�
1−η f (p)p−s

+ p−2s
�−1

if (p, N) = 1,
�
1−η f (p)p−s

�−1
if p | N .

Notice that in this paper all L-functions are normalized so that the functional

equation relates the values at s and 1− s. By the results of Deligne, these

local factors can be written as follows ([, Ch. ] or [, Ch. IX, § ]):

Lp( f , s) =
�
1−α f (p)p−s

�−1�
1−β f (p)p−s

�−1
, ()

where




|α f (p)| = 1, β f (p) = α f (p)−1 if (p, N) = 1,

α f (p) = ±p−
1

2 , β f (p) = 0 if p ‖ N (that is p | N and p2 ∤ N),

α f (p) = β f (p) = 0 if p2 | N .

We are interested in the two functions




g( f , s, z) = exp
�

iz
2

L′( f , s)

L( f , s)

�
,

G( f , s, z) = exp
�

iz
2

log L( f , s)
�

.
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Define hn(x) and Hn(x) as the coefficients of the following generating

functions:

exp
�

xt

1− t

�
=

+∞∑
n=0

hn(x)tn, exp(−x log(1− t)) =
+∞∑
n=0

Hn(x)tn,

or, equivalently (cf. [, § .]), as the functions given by h0(x)=H0(x)=1

and, for n¾1,

hn(x) =
n∑

r=0

1

r!

�
n−1

r−1

�
xr, Hn(x) =

1

n!
x(x+1)…(x+n−1).

As we have

iz
2

L′( f , s)

L( f , s)
= − iz

2

∑
p

α f (p)p−s log p

1−α f (p)p−s +
β f (p)p−s log p

1−β f (p)p−s ,

we can write (using the standard convention that, in the case when

β f (p)=0, we put β f (p)n
=0, if n>0, and β f (p)0

=1):

g( f , s, z) = exp
�

iz
2

L′( f , s)

L( f , s)

�
=

=
∏

p

exp
� α f (p)p−s

1−α f (p)p−s ·
−iz log p

2

�
exp

� β f (p)p−s

1−β f (p)p−s ·
−iz log p

2

�
=

=
∏

p

�∑
n

hn

�
− iz

2
log p

�
α f (p)n p−ns

��∑
n

hn

�
− iz

2
log p

�
β f (p)n p−ns

�
=

=
∏

p

�
+∞∑
n=0

n∑
r=0

hr

�
− iz

2
log p

�
hn−r

�
− iz

2
log p

�
α f (p)rβ f (p)n−r p−ns

�
=

=
∏
p∤N

�
+∞∑
n=0

n∑
r=0

hr

�
− iz

2
log p

�
hn−r

�
− iz

2
log p

�
α f (p)2r−np−ns

�
×

×
∏
p‖N

+∞∑
n=0

hn

�
− iz

2
log p

�
α f (p)n p−ns

=:
∏

p

+∞∑
n=0

λz(pn)p−ns.

In a similar way we get:

G( f , s, z) = exp
�

iz
2

log L( f , s)
�
=

=
∏

p

exp
�
− iz

2
log(1−αp( f )p−s)

�
exp

�
− iz

2
log(1−βp( f )p−s)

�
=

=
∏
p∤N

�
+∞∑
n=0

n∑
r=0

Hr

�
iz
2

�
Hn−r

�
iz
2

�
α f (p)2r−np−ns

�
×

×
∏
p‖N

+∞∑
n=0

Hn

�
iz
2

�
α f (p)n p−ns

=:
∏

p

+∞∑
n=0

Λz(pn)p−ns.
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We extend multiplicatively λz and Λz to N so that we can write:

g( f , s, z) =
∑
n¾1

λz(n)n−s, G( f , s, z) =
∑
n¾1

Λz(n)n−s.

We will use the notation L for
L′( f , s)

L( f , s)
or log L( f , s), g for g or G,

hz(pn) for hn

�
− iz

2
log p

�
or Hn

�
iz
2

�
, and l for λ or Λ depending on the

case we consider. Thus, we can write in a uniform way:

g( f , s, z) = exp
�

iz
2

L( f , s)
�
=

∑
n¾1

lz(n)n−s
=

∏
p

+∞∑
n=0

lz(pn)p−ns
=

=
∏
p∤N

�
+∞∑
n=0

n∑
r=0

hz(pr)hz(pn−r)α f (p)2r−n p−ns

� ∏
p‖N

+∞∑
n=0

hz(pn)α f (p)n p−ns.

The coefficients lz(n) will be used to define the eM-functions in the

case of averages over twists of modular forms by Dirichlet characters.

2.2. The coefficients lz(n) and cz,x(n)

In this subsection we will find a more explicit expression for lz(n).

For p ∤N we will use the formula (see [, (.)])

η f (pr) =
α f (p)r+1−β f (p)r+1

α f (p)−β f (p)
,

which easily follows from (). Taking into account that β f (p)= ᾱ f (p),

we have for r¾2

η f (pr) =
α f (p)r+1−α f (p)r+1

α f (p)−α f (p)
=

r∑
i=0

α f (p)iα f (p)r−i
=

r∑
i=0

α f (p)r−2i
=

= α f (p)r
+α f (p)r

+

r−1∑
i=1

α f (p)r−2i
=

= α f (p)r
+α f (p)r

+

r−2∑
i=0

α f (p)r−2i−2
=

= α f (p)r
+α f (p)r

+η f (pr−2).

The above formula also holds for r=1 if we put η f (p−1)=0. From

this we deduce that

α f (p)r
+β f (p)r

= η f (pr)−η f (pr−2).
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Using the previous formula, we can write

lz(pr) =
r∑

a=0

hz(pa)hz(pr−a)α f (p)2a−r

= hz(p
r

2 )2
+

⌊ r−1

2
⌋∑

a=0

hz(pa)hz(pr−a)
�
α f (p)r−2a

+α f (p)2a−r
�
=

= hz(p
r

2 )2
+

⌊ r−1

2
⌋∑

a=0

hz(pa)hz(pr−a)
�
η f (pr−2a)−η f (pr−2a−2)

�
=

= hz(p
r

2 )2−hz(p
r

2
−1)hz(p

r

2
+1)+

+

⌊ r−1

2
⌋∑

a=0

(hz(pa)hz(pr−a)−hz(pa−1)hz(pr−a+1))η f (pr−2a) =

=

⌊ r

2
⌋∑

a=0

(hz(pa)hz(pr−a)−hz(pa−1)hz(pr−a+1))η f (pr−2a),

where we put hz(p
r

2 )=hz(p
r

2
−1)=0, if r is odd, and hz(pa)=0, if a<0.

When p |N we have

lz(pr) = hz(pr)α f (p)r
= hz(pr)η f (p)r

= hz(pr)η f (pr).

Denoting by P the set of prime numbers, for n=
∏

p∈P
pvp(n) put

IN (n)= {m ∈N : vp(m)≡ vp(n)mod 2 for p ∈P , vp(n)= vp(m) if p | N}

and

JN (n) = {m ∈ IN (n): vp(m) ¶ vp(n) for all p ∈ P }.

Note the following easy estimate [, Theorem ], in which τ(n) is the

number of divisors of n:

|JN (n)| =
∏
p|n

��vp(n)

2

�
+1

�
¶ τ(n)≪ǫ nǫ. ()

The previous computations may be summarized as follows:

lz(pr) =
∑

x∈JN (pr )

cN
z,x

(pr)η f (x),

where

cN
z,pa (pr) =

=






hz(p
r−a

2 )hz(p
r+a

2 )−hz(p
r−a

2
−1)hz(p

r+a

2
+1), if p ∤ N and r ≡ amod 2,

hz(pr), if p | N and r = a,

0, otherwise.
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We have lz(n)=
∏
p|n

lz(pvp(n)) and η f (n)η f (m)=η f (nm) if (n, m)=1, thus

lz(n) =
∏
p|n

� ∑

x∈JN (pvp (n))

cN
z,x

(pvp(n))η f (x)
�
=

∑
x∈JN (n)

cN
z,x

(n)η f (x),

with

cN
z,x

(n) =
∏
p|n

cN

z,pvp (x) (pvp(n)).

Note that the coefficients cN
z,x

(n), IN (n), and JN (n) depend only on the

level N and not directly on the modular form f . Let us also define

I(n)= I1(n), J(n)= J1(n), and cz,x(n)= c1
z,x

(n). They will be employed

in the statement of Theorem ., which is our main result on averages

over the set of primitive forms Bk(N).

Let B(a, R)= {z ∈C : |z− a|< R} denote the open disc of radius R

and center a∈C, let B(a, R) be the corresponding closed disc. We also

put DR= B(0, R). The following estimate is used throughout the paper.

Lemma .. For any ǫ > 0 and z∈DR we have |cN
z,x

(n)|≪ǫ,R nǫ and

|lz(n)|≪ǫ,R nǫ.

Proof. To see this, recall [, ..] that for any prime p

���Hr

�
iz
2

���� ¶ Hr

� |z|
2

�
¶ hr

� |z|
2

�
¶ hr(|z| log p)

and ���hr

�
− iz

2
log p

���� ¶ hr(|z| log p) ¶ exp
�
2
Æ

r|z| log p
�
,

thus in both cases |hz(pr)|¶ exp
�
2
p

r|z| log p
�
. Using the concavity of

the function
p

x, we see that

|cN
z,x

(pr)| ¶ e2
q

r−a

2
|z| log pe2

q
r+a

2
|z| log p

+ e2
q

( r−a

2
−1)|z| log pe2

q
( r+a

2
+1)|z| log p ¶

¶ e
2
p
|z| log p

�q
r−a

2
+

q
r+a

2

�
+ e

2
p
|z| log p

�q
r−a

2
−1+

q
r+a

2
+1

�
¶

¶ e2
p
|z| log p

p
2r
+ e2
p
|z| log p

p
2r ¶ 2e2

p
2r|z| log p.

when p ∤N . The above estimates on hz(pr) also imply the same bound

on cN
z,x

(pr) when p |N .
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Now, denoting by ω(n) the number of distinct prime divisors of n

and using once again the concavity of
p

x, for n=
∏

p∈P
pvp(n) we have

log |cN
z,x

(n)| ¶
∑
p|n

(log 2+
q

vp(n) log p
p

8R)≪R

�∑
p|n

q
vp(n) log p

�p
8R≪

≪R

È∑
p|n

vp(n) log p
p
ω(n)≪R

√√ log n

2+log log n

Æ
log n,

since by [, Sublemma ..] (which is classical in the case of N) we

have

ω(n)≪ log n

2+ log log n
. ()

We thus conclude that |cN
z,x

(n)|≪ǫ,R nǫ.

As for the second statement, we notice that the estimate () together

with Deligne bound |η f (n)|¶τ(n)≪ǫ nǫ imply

lz(n)≪ǫ |JN (n)| ·nǫ ·τ(n)≪ǫ n3ǫ.

We conclude the section by the following trivial but useful lemma.

Lemma .. We have lz(n)= l−¯̄z(n), and cN
z,x

(n)= cN
−¯̄z,x

(n).

Proof. The eigenvalues η f (n) are all real, so the L-functions L( f , s)

have Dirichlet series with real coefficients. Thus the statement of the

lemma follows from the definition of the coefficients lz(n), and cN
z,x

(n).

3. Average on Twists

This section is devoted to the proof of an averaging result for twists

of a given primitive form. It is to a large extent based on the work of Ihara

and Matsumoto [], which provides a general setting for the problem we

consider.

3.1. Setting

Let us fix a primitive cusp form f ∈ Bk(N) of weight k and level N . Let

χ : (Z/mZ)×→C× be a primitive character mod m, where (m, N)=1. It

is known (see [, Prop. . and Prop. .]) that f ⊗χ is a primitive

form of weight k, level Nm2, and nebentypus χ2. We consider the twisted

L-function given by

L( f ⊗χ, s) =
∏

p

Lp( f ⊗χ, s),
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where the local factors are defined as follows:

Lp( f ⊗χ, s) =
�
1−α f (p)χ(p)p−s

�−1�
1−β f (p)χ(p)p−s

�−1
,

with the notation of Section . It is an L-function of degree 2 and con-

ductor Nm2, entire and polynomially bounded in vertical strips. After

multiplication by the gamma factor

γk(s) =
p
π2

3−k

2 (2π)−s
Γ

�
s+

k−1

2

�
,

it satisfies a functional equation [, § .]. Its analytic conductor q( f ⊗
⊗χ, s) is defined as follows:

q( f ⊗χ, s) = Nm2
����s+ k−1

2

���+3
�����s+ k+1

2

���+3
�
¶ Nm2(|s|+ k+3)2.

Just as in Section  we use the following notation for modular forms

with nebentypus:





g( f ⊗χ, s, z) = exp
�

iz
2

L′( f ⊗χ, s)

L( f ⊗χ, s)

�
,

G( f ⊗χ, s, z) = exp
�

iz
2

log L( f ⊗χ, s)
�

.

We also write g( f ⊗χ, s, z) to denote either of the above two functions.

If G is a function on a finite group K, let Avgχ∈K G(χ) denote the

usual average |K|−1
∑
χ∈K

G(χ).

3.2. The eM-function

We would like to understand the average over all Dirichlet characters

mod m of the functions g( f ⊗χ, s, z), when m runs through large prime

numbers. Ihara and Matsumoto’s results apply in this case and we get

the following theorem.

Theorem .. Assume that m is a prime number. Let Γm denote the

group of Dirichlet characters modulo m. Let 0<ǫ <
1
2

and T , R> 0. Let

s=σ+ it belong to the domain σ¾ ǫ+
1

2
, |t|¶ T , let z and z′ be inside

the disk DR. Then, assuming the Generalized Riemann Hypothesis (GRH)

for L( f ⊗χ, s), in the notation of Section  we have

Avg
χ∈Γm

�
g( f ⊗χ, s, z)g( f ⊗χ, s, z′)

�
−

∑
(n,m)=1

lz(n) lz′(n)n−2σ ≪ǫ,R,T , f m−
ǫ

2 .

()
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Moreover,

lim
m→∞

Avg
χ∈Γm

�
g( f ⊗χ, s, z)g( f ⊗χ, s, z′)

�
=

∑
n¾1

lz(n) lz′(n)n−2σ.

Proof. We notice that g( f ⊗χ, s, z)=
∑
n¾1

lz(n)χ(n)n−s, where lz(n)

are the coefficients of g( f , s, z). We thus can deduce the theorem from

[, Theorem ]. We can pass to the situation treated in [] by omitting

the summand corresponding to the trivial character χ0 since in our case

all the g( f ⊗χ, s, z) are holomorphic for Re s>
1
2

. Thus, it is enough to

prove that the family l|z|¶R is uniformly admissible in the sense of Ihara

and Matsumoto.

First of all, the property (A), asserting that l|z|¶R(n)≪ǫ nǫ, follows

from Lemma ..

The property (A) states that g( f ⊗χ, s, z) extend to holomorphic

functions on Re s>
1
2

for any non trivial χ, which is true under GRH.

The property (A) will be proven in the following lemma, which will

be used again in Section .

Lemma .. Let f be a primitive form of weight N, and let χ be a

primitive Dirichlet character of conductor m coprime with N . Then, assum-

ing GRH for L( f ⊗χ, s), we have for Re s¾
1

2
+ǫ:

max(0, log |g( f ⊗χ, s, z)|)≪ǫ,R ℓ(t)1−2ǫℓ(mNk)1−2ǫ,

where ℓ(x)= log(|x|+2), t= Im s.

Proof of the lemma. First, the following estimates hold [, Theo-

rems . and .] for any s with
1
2
<Re s=σ¶

5
4

:

− L′( f ⊗χ, s)

L( f ⊗χ, s)
= O

�
1

2σ−1
(logq( f ⊗χ, s))2−2σ

+ log logq( f ⊗χ, s)
�

,

and

log L( f ⊗χ, s) = O
� (log q( f ⊗χ, s))2−2σ

(2σ−1) log log q( f ⊗χ, s)
+ log logq( f ⊗χ, s)

�
,

the implied constants being absolute.

Next, for the same range of s we have

logq( f ⊗χ, s)≪ log(mNk)+ log(|t|+2)≪ ℓ(mNk)+ℓ(t).

Thus we see that

log |g( f ⊗χ, s, z)| = log

���exp
�

iz
2

L( f ⊗χ, s)
���� = Re

�
iz
2

L( f ⊗χ, s)
�
≪

≪R |L( f ⊗χ, s)|,
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so

max(0, log |g( f ⊗χ, s, z)|)≪ǫ,R ℓ(t)1−2ǫℓ(Nmk)1−2ǫ.

If σ¾
5
4

a much simpler estimate suffices. Indeed, using the fact that

[, (.)]

− L′( f , s)

L( f , s)
=

∑
n

Λ f (n)

ns and log L( f , s) = −
∑
n

Λ f (n)

ns log n
,

with Λ f (n) supported on prime powers and

Λ f (pn) = (α f (p)n
+β f (p)n) log p,

we see that both
L′( f ⊗χ, s)

L( f ⊗χ, s)
and log L( f ⊗χ, s) are bounded by an abso-

lute constant. Thus the conclusion of the lemma still holds in this case.

Thus Ihara and Matsumoto’s property (A) is established (with a

stronger bound than required), since in our case N and k are fixed. So,

the family we consider is indeed uniformly admissible.

Remark .. We think that the estimate () should still be true if

we omit the condition on m to be prime. To prove it one establishes

an analogue of Lemma ., replacing χ with the primitive character by

which it is induced and estimating the bad factors of the L-function (with

some additional work required when m is not coprime with N). Then

one uses once again [, Theorem ], in which the first inequality is true

without any restriction on the conductor.

Remark .. The theorem should hold unconditionally for σ =

=Re s>1 by orthogonality of characters, all the series being absolutely

convergent in this domain.

As a direct consequence, we obtain the following result on averages

of the values of g. Put

eMs(z1, z2) =
∞∑

n=1

lz1
(n)lz2

(n)n−2s.

Because of Lemma ., the series converges uniformly and absolutely on

Re s¾
1
2
+ǫ, |z1|, |z2|¶R, defining a holomorphic function of s, z1, z2 for

Re s>
1
2

. Put

ψz1 ,z2
(w) = exp

�
i

2
(z1¯̄w+ z2w)

�
.
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Corollary .. Let m run over prime numbers. Then, assuming GRH,

lim
m→∞

Avg
χ∈Γm

ψz1,z2
(L( f ⊗χ, s)) = eMσ(z1, z2).

Proof. By definition, we have:

ψz1,z2
(L( f ⊗χ, s)) = exp

�
i

2
z1L( f ⊗χ, s)

�
exp

�
i

2
z2L( f ⊗χ, s)

�
=

= g( f ⊗χ, s,−¯̄z1) g( f ⊗χ, s, z2).

By Theorem . we get

lim
m→∞

Avg
χ∈Γm

ψz1,z2
(L( f ⊗χ, s)) =

∑
n¾1

l−¯̄z1
(n) lz2

(n)n−2σ.

Lemma . implies that l−¯̄z(n)= lz(n), so the corollary is proven.

4. The Distribution of L-Values for Twists

Our next result concerns the distribution of the values of logarithmic

derivatives and logarithms of L-functions of twists of a fixed modular

form f . In this section the dependence on f in≪ will be omitted.

Recall that we have defined

eMs(z1, z2) =
∞∑

n=1

lz1
(n)lz2

(n)n−2s,

the corresponding series being absolutely and uniformly convergent on

Re s¾
1
2
+ǫ, |z1|¶R, |z2|¶R. For σ∈R, we put eMσ(z)= eMσ(z, ¯̄z).

Define the family of additive characters

ψz1,z2
(w) = exp

�
i

2
(z1¯̄w+ z2w)

�
.

We also let ψz(w)=ψz,¯̄z(w)= exp(i Re(z¯̄w)). Recall that the Fourier

transform of φ : C→C, φ∈ L1 is defined as

Fφ(z) =
Í

C

φ(w)ψz(w)|dw| = 1
2π

Í

C

φ(w)ei Re(z ¯̄w)|dw| =

=
1

2π

Í

R2

φ(w)ei(xx ′+yy ′) dx dy,

where |dw|= 1
2π

dx dy, x=Re w, y= Im w, x′=Re z, y′= Im z.

The goal is to prove the following equidistribution result, which is

an analogue of [, Theorem ].
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Theorem .. Let Re s=σ>
1
2

and let m run over prime numbers. Let

Φ be either a continuous function on C with at most exponential growth,

that is, Φ(w)≪ ea|w| for some a> 0, or the characteristic function of a

bounded subset of C or of a complement of a bounded subset of C. Define

Mσ as the inverse Fourier transform of eMσ(z), Mσ(z)=F eMσ(−z). Then

under GRH for L( f ⊗χ, s) we have

lim
m→∞

Avg
χ∈Γm

Φ(L( f ⊗χ, s)) =

Í

C

Mσ(w)Φ(w)|dw|. ()

Remark .. We think that the above theorem should hold uncon-

ditionally for any σ> 1 and any continuous function Φ on C, by virtue

of Remarks . and (iv) of Corollary ..

To prove this theorem we first construct the local M and eM-functions

and establish their properties. We then obtain a convergence result for

partial M-functions Ms,P for finite sets of primes P to a global function

M . This allows us to prove some crucial estimates for the growth of M .

Finally, we deduce the global result using Corollary .. Our approach

is strongly influenced by that of Ihara and Matsumoto, the main ingre-

dients being inspired by the results of Jessen and Wintner [] that we

have to adapt to our situation.

All the results below, except for the proof of Theorem . itself, do

not depend on GRH.

4.1. The functions Ms,P and eMs,P

Let Re s=σ>0. Define the functions on Tp=C
1
={t∈C : |t|=1} by

gs,p(t) =
−(log p)α(p)p−st

1−α(p)p−st
+
−(log p)β(p)p−st

1−β(p)p−st
,

and

Gs,p(t) = − log(1−α(p)p−st)− log(1−β(p)p−st).

As before, we let gs,p denote either gs,p or Gs,p, depending on the case we

consider. We note that the local factor of the L-function is 1 once p2 |N ,

so we can omit such primes from our considerations.

Denote by fp(z) the expression

−(log p)α(p)z

1−α(p)z
+
−(log p)β(p)z

1−β(p)z
or − log(1−α(p)z)− log(1−β(p)z).

in the log′ and log case respectively. Note that if p ∤N ,

fp(z) = − log p ·
η f (p)z−2z2

1−η f (p)z+ z2 or − log(1−η f (p)z+ z2)
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respectively. The functions fp(z) are holomorphic in the open disc |z|<1.

We obviously have gs,p(t)= fp(p−st).

For a prime number p, let Tp=C
1 be equipped with the normalized

Haar measure d×t=
dt

2πit
. If P is a finite set of primes, we let TP =

∏
p∈P

Tp

and we denote by d×tP the normalized Haar measure on TP . Put also

gs,P=
∑
p∈P

gs,p.

We introduce the local factors eMs,p(z1, z2) via

eMs,p(z1, z2) =
+∞∑
r=0

lz1
(pr)lz2

(pr)p−2rs. ()

The series is absolutely and uniformly convergent on compacts in Re s>0 by

Lemma .. Put eMs,P(z1, z2)=
∏
p∈P

eMs,p(z1, z2). We also define eMσ,p(z)=

= eMσ,p(z, ¯̄z), and eMσ,P (z)= eMσ,P(z, ¯̄z).

Lemma .. (i) The function eMs,P(z1, z2) is entire in z1, z2.

(ii) We have

eMs,p(z1, z2) =

Í

C1

exp
�

i
2

(z1gs,p(t−1)+ z2gs,p(t))
�

d×t.

In particular,

eMσ,p(z1, z2) =

Í

C1

ψz1,z2
(gσ,p(t))d×t

and eMσ,p(z) =

Í

C1

exp(i Re(gσ,p(t)¯̄z))d×t.

(iii) The “trivial” bound | eMσ,p(z)|¶1 holds.

Proof. (i) This is a direct corollary of the absolute and uniform con-

vergence of the series of analytic functions (), defining eMs,p(z1, z2).

(ii) It is clear from the definitions that

exp
�

iz
2

gs,p(t)
�
=

∞∑
r=0

lz(pr)(p−st)r.

So, the statement is implied by the fact that eMs,p is the constant term of

the Fourier series expansion of exp
�

i
2

(z1gs,p(t−1)+ z2gs,p(t))
�

.

(iii) Obviously follows from (ii).

For the sake of convenience in what follows we will identify a func-

tion on R2 with the Radon measure or the tempered distribution it de-
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fines, when the latter make sense. We will also regard the Fourier trans-

form or the convolution products as being defined via the corresponding

distributions. We refer to [, § , § ] for more details.

Proposition .. (i) There exists a unique positive measure Mσ,P of

compact support and mass 1 on C≃R2 such that

Mσ,P(Φ) =
Í

TP

Φ(gs,P(tP))d×tP

for any continuous function Φ on C.

(ii) FMσ,P=
eMσ,P(z).

(iii) There exists a set of primes P f of positive density such that, for all

p∈P f , eMσ,p(z)≪p,σ (1+ |z|)− 1

2 .

(iv) Let P be a set of primes. If |P ∩ P f | > 4, then Mσ,P admits a

continuous density (still denoted by Mσ,P ) which is an L1 function. The

function Mσ,P satisfies Mσ,P(z)=Mσ,P(¯̄z)¾0.

(v) Mσ,P is of class C r once |P∩P f |>2(r+2).

Proof. (i) The uniqueness statement is obvious and the existence is

given by the direct image measure (gs,P)∗(d×tP). The volume of an open

set U of R2 is thus given by Mσ,P (U)=Vol(g−1
s,P

(U)), therefore Mσ,P has

compact support equal to the image of gs,P and mass 1. From the formula

Ms,P(Φ)=
Í

TP

Φ(gs,P(tP))d×tP , it is clear that Ms,P depends only onσ, since

Haar measures on TP are invariant under multiplication by pi Im(s).

(ii) From the definition of the convolution product we note that,

regarded as distributions with compact support, Mσ,P=∗p∈P Mσ,p.

Next, FMσ,P=F (∗p∈P Mσ,P)=
∏
p∈P

FMσ,p. From Lemma . we see

that eMσ,P(z1, z2)=Mσ,P(ψz1,z2
), and for the Fourier transforms of tem-

pered distributions on C≃R2 we have

FMσ,p(φ) =

= Mσ,p

�Í

C

ψz(w)φ(w)|dw|
�
=

Í

Tp

Í

C

ψgs,p (t)(w)φ(w)|dw|d×t =

=

Í

C

Í

Tp

ψgs,p (t)(w)φ(w)d×t|dw| =
Í

C

Mσ,p(ψz(w))φ(w)|dw| =

=

Í

C

Mσ,p(ψw(z))φ(w)|dw| =
Í

C

eMσ,p(w)φ(w)|dw|.

We deduce that FMσ,P=
eMσ,P(z).
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(iii) This is the most delicate part. Unfortunately, we cannot apply

Jessen––Wintner theorem [, Theorem ] to fp(z), since ρ0 (in the no-

tation of the latter theorem) depends on p. Therefore, we need to estab-

lish the following explicit version of their result.

Lemma .. Let ρ > 0 and let F(z) =
∑
k¾1

akzk be absolutely con-

vergent for |z| < ρ + ǫ, ǫ > 0. Let S ⊂ C denote the parametric curve

{S(θ )}θ∈[0,1] = {F(re2πiθ )}θ∈[0,1]. Let Dr be the distribution on C= R2

defined as the direct image of the normalized Haar measure on the circle

of radius r in C by F and let eDr =FDr be its Fourier transform. Assume

that |a1| 6=0. Then, if

ρ′′′ =
|a1|p

2
�∑

k¾2

k3|ak |ρk−2
� ,

for any r<ρ0=min(ρ,ρ′′′) we have eDr(z)≪r,F (1+ |z|)−
1

2 .

Proof. Our goal is to make the proof of [, Theorem ] explicit in

order to be able to estimate ρ0. To do so, we will verify the conditions of

[, Theorem ] by proceeding in several steps.

First of all, we want to ensure that F ′(z) 6= 0, and the curve S is

Jordan. Put

ρ′ =
|a1|p

2
∑
k¾2

k|ak|ρk−2
.

If r <min(ρ,ρ′), we have F ′(z) 6= 0 for all z ∈ Dr = B(0, r), and F is

injective on Dr. Indeed, either |Re a1| or | Im a1| is greater than
|a1|p

2
.

Without loss of generality we can suppose that |Re a1|¾
|a1|p

2
. Then

|Re F ′(z)| ¾ |Re a1|− |z|
∑
k¾2

k|ak|ρk−2 ¾
|a1|p

2
−|z|

∑
k¾2

k|ak|ρk−2 > 0

on Dr, in particular F ′(z) 6=0. The sign of Re F ′(z) does not change as the

function is continuous, so once more, without loss of generality, we may

assume that Re F ′(z)>0. Then, for z1 6= z2 two points in Dr, we have by

convexity of Dr,

Re
F(z2)− F(z1)

z2− z1
=

1Í

0

Re F ′(z1+ t(z2− z1))dt > 0,
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which proves the injectivity. Thus F is a conformal transformation and S

is a Jordan curve.

The next step is to get a condition for the curve S to be convex. We

use a well-known criterion [, Part , Chapter , ], stating that S is

convex if

Re
zF ′′(z)

F ′(z)
> −1

on |z|= r. The estimate

���Re
zF ′′(z)

F ′(z)

��� ¶ |zF ′′(z)|
|F ′(z)| ¶

|z|
∑
k¾2

k(k−1)|ak|ρk−2

|a1|− |z|
∑
k¾2

k|ak |ρk−2
¶

|z|
∑
k¾2

k(k−1)|ak|ρk−2

|a1|
�

1− 1p
2

�

for r <min(ρ,ρ′) implies that the condition is satisfied once the left-

hand side is less than one, that is,

r < ρ′′ =
|a1|(2−

p
2)

2
∑
k¾2

k(k−1)|ak|ρk−2
.

Now, the condition (i) of [, Theorem ] is satisfied for all r<ρ.

As for (ii) we consider the function

gτ(θ ) =
∑
k¾1

|ak|rk cos 2π(kθ +γk−τ),

where τ∈ [0, 1) is fixed and ak = |ak|e2πiγk . We have to prove that for

r explicitly small enough, its second derivative has exactly two roots on

[0, 1). We compute

hτ(θ ) = −
g′′
τ

(θ)

4π2r
=

= |a1| cos 2π(θ +γ1−τ)+ r
∑
k¾2

j2|ak|rk−2 cos 2π(kθ+γk−τ),

so

h′τ(θ ) = −2π|a1| sin 2π(θ +γ1−τ)−
−2πr

∑
k¾2

k3|ak|rk−2 sin 2π(kθ +γk−τ).

Take now

r <
|a1|p

2
�∑

k¾2

k3|ak|ρk−2
� = ρ′′′.
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Since
∑
k¾2

k3|ak|ρk−2¾
∑
k¾2

k2|ak|ρk−2, the function hτ can possibly have

zeroes only on the two intervals (modulo 1) containing±1
4
−γ1+τmod 1

defined by the condition |cos 2π(θ + γ1 − τ)| < 1p
2

. The same argu-

ment shows that hτ is positive at θ =−γ1 + τmod 1 and negative at

θ =
1

2
+τ− γ1mod 1, and therefore it has at least one zero in each of

these intervals.

On the other hand, when |cos 2π(θ +γ1−τ)|< 1p
2

, we see that

|h′τ(θ )| ¾ 2π|a1| · | sin 2π(θ +γ1−τ)|−2πr
∑
k¾2

k3|ak|rk−2 >

> 2π|a1|
�r

1− 1
2
− 1p

2

�
= 0,

showing that there is exactly one zero of hτ in each of the above inter-

vals.

We thus can apply [, Theorem ], obtaining that the conclusion

of the theorem holds for r<ρ0=min(ρ,ρ′,ρ′′,ρ′′′)=min(ρ,ρ′′′).

By [, Corollary  of Theorem ], there exists a set P of positive

density such that, for all p ∈ P, |η f (p)|>1. We apply the above lemma

to the functions F= fp, p∈ P, defined by absolutely convergent series for

|z|<ρ + ǫ, with ρ = ǫ=
1

2
, and to the radii rp = p−σ. In the log case,

the coefficient |a1| of the lemma is |η f (p)|, whereas we have for any i,

|ai|¶2. In the log′ case, the coefficients are all multiplied by log p: |a1|
is |η f (p)| log p and |ai|¶2 log p. Thus, for p such that p∈ P and

p−σ <
1

8
p

2
∑
k¾2

k32−k
=

1

204
p

2
,

we have that eMσ,p(z)=O
�
(1+ |z|)− 1

2

�
, proving thus (iii).

(iv), (v) By the Fourier inversion formula, we getF eMσ,P (−z)=Mσ,P .

It is well-known [, § ] that f = F g is absolutely continuous and

admits continuous density, once the integral
Í

C

|g(w)||dw| converges.

Moreover, it possesses continuous partial derivatives of order ¶ p, if the

convergence holds for
Í

C

|z|p|g(w)||dw|. Thus, to deduce the regularity

properties of Mσ,P it suffices to bound the growth of eMσ,P(z).
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For the primes p /∈P f , we use the trivial bound | eMσ,p(z)|¶ 1 from

Lemma .. For all the other p the bound from (iii) can be applied.

Now, the identity Mσ,P (z)=Mσ,P(¯̄z) is the consequence of (ii) to-

gether with the symmetry eMσ(z, ¯̄z)= eMσ(¯̄z, z). The positivity of Mσ,P (z)

follows from the definition Mσ,P (U)= Vol(g−1
σ,P

(U)) together with the

continuity that we have established.

Let P denote the set of all prime numbers, Px ={p∈P : p¶ x}.

Corollary .. Given r > 0, y > 0, there exists C = C( y, r, f ) such

that eMσ,Px\Py
(z)=O((1+ |z|)−r) and the function Mσ,Px\Py

(z) is of class

C r for all x¾C.

Proof. This comes directly from the fact that P f has positive den-

sity, implying that there exists C such that if x¾C, then (Px \Py )∩P f

contains more than 2r+4 primes.

Remark .. The previous proposition is motivated by the following

equidistribution result that is essentially implied by [, Lemma ..]

applied to Ψ=Φ◦gσ,P:

lim
m→∞

Avg
χ∈Γm

Φ(LP( f ⊗χ, s)) =

Í

TP

Φ(gσ,P(tP))d×tP ,

where Φ is a an arbitrary continuous function on C, LP is either the loga-

rithm or the logarithmic derivative of the corresponding partial product∏
p∈P

Lp( f ⊗ χ, s) for L( f ⊗χ, s), and χ runs through all Dirichlet char-

acter of prime conductor m 6∈ P. Note a difference in the type of average

considered in the aforementioned lemma with the one we use. The proof

stays the same, being an application of Weyl’s equidistribution criterion

together with the orthogonality of characters.

Note, however, that it is not at all obvious to pass from the local

equidistribution result to the global one. This also seems to give (after

very significant effort) only a certain weaker form of global averag-

ing results (e.g., [], []). Following later papers by Ihara and Mat-

sumoto, we use instead the convergence for particular test functions

(quasi-characters, cf. Theorem .) and then deduce the general case,

using the information on the resulting distributions together with some

general statements on convergence of measures.

4.2. Global results for eMσ

Let us establish some global properties of eM , in particular the con-

vergence of eMσ,P to eMσ. From now on we assume that Re s=σ >
1
2

,
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without mentioning it in each statement. Recall that eMσ(z) is defined

as eMσ(z, z).

Proposition .. (i) The function eMs(z1, z2) is entire in z1, z2.

(ii) We have the Euler product expansion

eMs(z1, z2) =
∏

p

eMs,p(z1, z2),

which converges absolutely and uniformly on Re s¾
1
2
+ǫ and |z1|, |z2|¶R,

for any ǫ, R>0.

(iii) eMσ(z)=O((1+ |z|)−N) for all N>0.

Proof. (i) This is a direct corollary of the absolute and uniform con-

vergence of the series of analytic functions, defining eMs(z1, z2).

(ii) To prove the uniform convergence of the infinite product it is

enough to establish it for the sum
∑

p

| eMs,p(z1, z2)−1|. By Lemma . we

see that

| eMs,p(z1, z2)−1| ¶
∞∑

r=1

|lz1
(pr)||lz2

(pr)|p−2rσ ≪ǫ′,R

∞∑
r=1

p(2ǫ′−2σ)r ¶

¶
∞∑

r=1

p(−1−ǫ)r < 2p−1−ǫ,

which implies the convergence.

The limit of the infinite product equals eMs. Indeed, the series for
eMs converges absolutely and uniformly, thus the difference between eMs

and the partial product over primes p¶ x, which is
∑

n∈Sx

lz1
(n)lz2

(n)n−2s,

where Sx is the set of integers n divisible by at least one prime strictly

greater than x, tends to 0 as x→∞.

(ii) Note that for any two sets P⊂ P′ of primes, any z∈C,

| eMσ,P ′(z)| ¶ | eMσ,P (z)|.
Corollary . implies that one can find a finite set of primes P such that
eMσ,P (z)≪ (1+ |z|)−N . This is enough to conclude.

Remark .. Along the same lines as in [, .], one proves a

more precise estimate: | eMσ,p(z)−1|≪ |z|2p−2σ in the log case, and

| eMσ,p(z)−1| ≪ |z|2 p−2σ log p

in the log′ case with absolute constants in≪.

Remark .. One should be able to write an explicit power series

expansion of eMs(z1, z2) similar to the one in [, § , Theorem eM].
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4.3. Global results for Mσ

Proposition .. The sequence (Mσ,Px
(z))x≫1 converges uniformly

(as continuous functions) to Mσ(z) :=F eMσ(−z). Moreover, for a fixed y,

the sequence of continuous functions (Mσ,Px\Py
)x≫1 converges uniformly to

the continuous function M(y)
σ = ∗P \Py

Mσ,p :=F
� ∏

p∈P \Py

eMσ,p(−z)
�
, and

we have Mσ(z)=Mσ,Py
∗M(y)

σ .

Proof. First of all, the notation x≫1 is used to make sure that all

the elements of the sequence are continuous functions.

Fix ǫ>0. One can find a closed disk Dr and x′ large enough, so that

for all P′⊃Px ′ , Í

C\Dr

| eMσ,P ′(w)||dw| < ǫ.

The sequence ( eMσ,Px
(z))x≫1 converges uniformly to eMσ(z)= eMσ(z) on

Dr by Proposition ., thus we can find x′′ large enough to guarantee for

x>max(x′, x′′),

‖F eMσ(z)−F eMσ,Px
(z)‖∞ < 2ǫ.

This proves that the sequence (F eMσ,Px
(z))x≫1= (Mσ,Px

(−z))x≫1 con-

verges uniformly to F eMσ(z)=Mσ(−z).

The same arguments apply if we remove Py from the set of all

primes. Moreover, taking the Fourier transform of

eMσ =
eMσ,Py

×
∏

p/∈Py

eMσ,p,

we see that Mσ(z)=Mσ,Py
∗ (∗P \Py

Mσ,p).

Corollary .. We have

1) Mσ(z)=Mσ(¯̄z)¾0;

2)

Í

C

Mσ(z)|dz|=1;

3) Mσ(z) ∈ C ∞ and the partial derivatives of Mσ,Px
converge uni-

formly to those of Mσ;

4) If σ>1, the support of Mσ is compact.

Proof. (i) This is obvious from the corresponding properties of Mσ,P .

(ii) Using the identity Mσ(z)=F eMσ(−z), we see that
Í

C

Mσ(z)|dz| = eMσ(0) = 1.
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(iii) We note that, given p, there exists y0 such that for p > y0,

Mσ,Py
has continuous partial derivatives up to order p. Now, letting

D(a,b)
=

∂a+b

∂az ∂b ¯̄z
, we have D(a,b)( f ∗ g) = (D(a,b) f ) ∗ g, if f admits the

corresponding partial derivative. The statement now follows from the

uniform convergence of M
(y)

σ,Px\Py
to M(y)

σ .

(iv) Indeed, by the uniform convergence of Mσ,P to Mσ, and the fact

that the support of Mσ,P is equal to the image of gs,P, it is enough to prove

that the latter is bounded for σ>1. This is true since the series
∑
p

p−σ

converges for σ>1.

We will now obtain the rapid decay of Mσ à la Jessen––Wintner by

proving the following proposition, which is crucial for the proof of the

main theorem of this section.

Proposition .. For any λ> 0, Mσ(z)=Oσ,λ(e−λ|z|
2

), as |z|→∞.

The same is true for all its partial derivatives.

Proof. We adapt the proof of Jessen––Wintner [, Theorem ] to

our specific case. The proof is based on an argument of Paley and Zyg-

mund.

Let σ>
1
2

and λ>0 be fixed. Let p1<…< pi… denote the sequence

of all prime numbers. Write Pj={p1, …, p j}. We have

fp(z) =
∑
i¾1

ai,pzi,

on the disk B(0, 1). By writing

1−η f (p)z+ z2
= (1−α f (p)z)(1−β f (p)z),

where |α f (p)| and |β f (p)| are less than or equal to 1, we see that for all

i, |ai,p|¶2 log p in the log′ case and ¶2 in the log case respectively.

Put rp = p−σ. Then the series
∑

p

|a1,p|2r2
p

converges, so that we can

find q such that

d = 1−2λ
∑

p>pq

|a1,p|2r2
p
> 0.

For n> q let us look at the partial sums

sn(θ1, …, θn) =
n∑

j=1

fp j
(rp j

eiθ j ) and tn(θq+1, …, θn) =
n∑

j=q+1

a1,p j
rp j

eiθ j ,
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where θ j ∈ [0, 2π]. We can bound the difference by

|sn(θ1, …,θn)− tn(θq+1, …, θn)| ¶

¶

����
q∑

j=1

fp j
(rp j

eiθ j )

����+
n∑

j=q+1

∞∑
k=2

|ak,p j
|rk

p j
¶

¶

����
q∑

j=1

fp j
(rp j

eiθ j )

����+2
n∑

j=q+1

r2
p j

(1− rp j
)−1 log p j ¶

¶

����
q∑

j=1

fp j
(rp j

eiθ j )

����+8
+∞∑

j=q+1

r2
p j

log p j ¶

¶
q∑

j=1

sup
ϑ j∈[0,2π]

|fp j
(rp j

eiϑ j )|+8
+∞∑

j=q+1

r2
p j

log p j ≪ A(q)

as (1− rp j
)−1¶

p
2p

2−1
. Here A depends only on q and not on n.

By an inequality of Jessen [, p. ––], writing

|sn|2 ¶ 2|sn− tn|2+2|tn|2,

we obtain
Í

TPn

exp(λ|sn(θ1, …, θn)|2)dθ1…dθn ¶

¶ e2λA(q)2
Í

TPn,q

exp(2λ|tn(θq+1, …, θn)|2)dθq+1…dθn ¶

¶
e2λA(q)2

1−2λ
n∑

j=q+1

|a1,p|2r2
p j

¶ e2λA(q)2

d−1
= K, ()

where Pn,q= Pn \ Pq. Noting that Mσ,Pn
(eλ|w|

2

) is just the left-hand side of

(), we deduce:

Mσ,Pn
(eλ|w|

2

) ¶ K,

where K is independent of n. Thus by Fatou lemma and Proposition .

we conclude that Í

C

Mσ(w)eλ|w|
2

dw ¶ K.

Let us take y such that Mσ,Py
is a continuous function. It is clear

that if we remove all the terms corresponding to p¶ y, and take q> y
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large enough we obtain exactly the same bound for the function M(y)
σ =

=∗p∈P \Py
Mσ,p: Í

C

M(y)
σ (w)eλ|w|

2

dw ¶ K.

If Dρ = B(0,ρ), B= B(z,ρ) denote the corresponding closed discs,

z /∈Dρ, then

eλ(|z|−ρ)2
Í

B

M(y)
σ (w)|dw| =

Í

B

eλ(|z|−ρ)2

M(y)
σ (w)|dw| ¶

¶
Í

B

eλ|w|
2

M(y)
σ

(w)|dw| ¶ K.

Let ρ be large enough, so that Dρ contains the support of Mσ,Py
.

Then

Mσ(z) = (Mσ,Py
∗M(y)

σ )(z) =

=

Í

C

Mσ,Py
(w)M(y)

σ (z−w)|dw| =
Í

Dρ

Mσ,Py
(w)M(y)

σ (z−w)|dw| ¶

¶ sup
Dρ

Mσ,Py
(w) ·

Í

C

M(y)
σ (z−w)|dw| ¶ Ke−λ(|z|−ρ)2

sup
Dρ

Mσ,Py
(w).

As y,ρ,ρ are independent of z, we obtain that

Mσ(z) = O(e−λ|z|
2

).

According to Corollary ., one can take y large enough so that

Mσ,Py
has continuous partial derivatives of order up to p. We also have

D(a,b)( f ∗ g) = D(a,b)( f )∗ g = f ∗D(a,b)(g).

Thus, the same arguments as above imply that the required estimate

holds for partial derivatives of Mσ(z) of any order p.

Corollary .. The functions Mσ(z) and eMσ(z) belong to the

Schwartz space, that is, they go to zero as |z|→∞ faster than any inverse

power of |z|, as do all their derivatives.

Proof. The statement is clear for Mσ(z) by the above theorem. Now,
eMσ(z)=FMσ(−z). SinceF maps Schwartz functions to Schwartz func-

tions the result follows.

Corollary ..

eMσ(z1, z2) =
Í

C

Mσ(w)ψz1,z2
(w)|dw|.
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Proof. Each side of the above equality is an entire function of z1, z2

(the left one by Proposition ., the right one by Proposition .). These

functions are equal when z2 = ¯̄z1 by Proposition ., thus they must

coincide for any z1, z2∈C.

Remark .. The last corollary also follows from Theorem .,

however we prefer to give a direct proof.

4.4. Proof of Theorem .

We will apply Lemma A from [, § ], which is a general result that

allows to deduce from the convergence of averages for a special class of

functions Φ, the same fact for more general Φ.

First of all, Corollaries . and . imply that Mσ is a good density

function on R2 in the sense of Ihara and Matsumoto, that is, it is non-

negative, real valued, continuous, with integral over R2 equal to 1, and

such that both the function and its Fourier transform belong to L1∩ L∞.

By . the identity () holds for any additive character ψz of C.

Lemma A implies then that () is true for any bounded continuous Φ,

for the characteristic function of any compact subset of R2 or of the

complement of such a subset.

Now, take φ0(r)=exp(ar). Proposition . implies that

Í

C

Mσ(z)φ0(|z|)|dz|

converges. The same reasoning as in [, § ., Sublemma] allows us to

see that Avgχ∈Γm
exp(a|L( f ⊗ χ, s)|)≪ 1. This concludes the proof of

Theorem ..

5. Average on Primitive Forms

While working with modular forms it is analytically more natural to

consider harmonic averages instead of usual ones. One introduces the

harmonic weight

ω( f ) =
Γ(k−1)

(4π)k−1( f , f )N

,

where

( f , f )N =

Í

Γ0(N)\H

| f (z)|2 yk dx dy

y2
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is the Petersson scalar product, H = {z ∈C : Im z> 0}. We denote by

Avgh

f∈Bk(N)

G( f ) the harmonic average

Avgh

f∈Bk (N)

G( f ) =
∑

f∈Bk(N)

ω( f )G( f ).

It can be proven [, Corollary . for m=n=1] that for squarefree

N we have

∑
f∈Bk(N)

ω( f ) =
ϕ(N)

N
+O

�τ(N)2 log(2N)

Nk5/6

�
, ()

thus Avgh

f∈Bk (N)

is an average operator when
ϕ(N)

N
→1.

One has the following interpretation of ω( f ) via the symmetric

square L-functions [, Lemma .]:

ω( f ) =
2π2

(k−1)NL(Sym2 f , 1)
. ()

Theorem .. Assume that N is a prime number and that k is fixed.

Let 0<ǫ<
1
2

and T , R>0. Let s=σ+ it belong to the domain σ¾ǫ+
1
2

,

|t|¶T , and z and z′ to a disc DR. Then, assuming GRH for L( f , s), for any

δ>0 we have

Avgh

f∈Bk(N)

(g( f , s, z)g( f , s, z′))−

−
∑

n,m∈N
n−s̄m−s

∑
x∈J(n)∩J(m)

(nm,N)=1

cz,x(n) cz′,x(m)≪ǫ,R,T ,δ,k N−ǫ/2+δ,

and

lim
N→+∞

Avgh

f∈Bk (N)

(g( f , s, z)g( f , s, z′)) =

=
∑

n,m∈N
n−s̄m−s

∑
x∈J(n)∩J(m)

cz,x(n)cz′,x(m).

The convergence of the series is on the right-hand sides is uniform and

absolute in the above domains without the assumption of GRH.

Remark .. In contrast to the situation, considered in Theorem .,

we see that the average depends both on Re s and Im s. In fact, the inde-

pendence of Im s in the case of averages with respect to characters is the

corollary of the invariance of Haar measures on C1 under rotations.
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Corollary .. Under the conditions of the previous theorem we have

lim
N→+∞

Avgh

f∈Bk (N)

ψz1,z2
(L( f , s)) = eM h

s
(z1, z2) =

=
∑

n,m∈N
n−s̄m−s

∑
x∈J(n)∩J(m)

cz1,x(n)cz2,x(m).

Proof. We have ψz1 ,z2
(L( f , s))=g( f , s,−z1)g( f , s, z2), so

lim
N→+∞

Avgh

f∈Bk(N)

ψz1,z2
(L( f , s)) =

∑
n,m∈N

n−s̄m−s
∑

x∈J(n)∩J(m)

c−¯̄z1,x(n)cz2,x(m).

The corollary follows from the equality c−¯̄z,x(n)= cz,x(n), which is im-

plied by Lemma ..

5.1. Naive approach

In this subsection we try to estimate the average in a naive way via

Euler products. This approach works for Re s large enough and gives a

formula which turns out to be valid for more general s. The intermedi-

ate calculations will be used again in Section .. All the estimates are

written assuming only that N is squarefree and not assuming that k is

fixed until the very end of Section ..

We have

Avgh

f∈Bk(N)

(g( f , s, z)g( f , s, z′)) =
∑

f∈Bk (N)

ω( f )
∑

n,m¾1

n−s̄m−slz(n) lz′(m).

Let τk(n)= |{(d1, …, dk)∈Nk : d1…mdk=n}|. We will use a version

of the Petersson formula proven in [, Corollary .]. Note that our

weights are slightly different from those used in [], we follow instead

[] in our normalization.

Proposition .. If N is squarefree, (m, N)=1, (n, N2) |N, then

S(m, n) =
∑

f∈Bk(N)

ω( f )η f (m)η f (n) =
ϕ(N)

N
δ(m, n)+∆(m, n),

where δ(m, n) is the Kronecker symbol and

∆(m, n) = O
�
k−

5

6 (mn)
1

4 N−1(n, N)−1/2τ(N)2τ3((m, n)) log(2mnN)
�
,

the implied constant being absolute.
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The conditions of this proposition are in particular satisfied once

(nm, N)=1. We will also use the following trivial bound, when (m, N) 6=1:

|S(m, n)| ¶
∑

f∈Bk(N)

ω( f )
τ(m)τ(n)p

(m, N)
=

=

�ϕ(N)

N
+O

�τ(N)2 log(2N)

Nk5/6

��τ(m)τ(n)p
(m, N)

, ()

which holds by virtue of () and the fact that |η f (m)|¶ τ(m)p
(m, N)

since

N is squarefree. Obviously, the corresponding bound is also true if we

assume (n, N) 6=1 instead of (m, N) 6=1.

Remark .. In what follows, one can possibly soften our restric-

tions on N (in particular, remove the assumption that N→∞) by using

more elaborate bounds on the sums in the case when (mn, N) 6= 1, ap-

plying directly the construction of an explicit basis of Sk(N) from Bk(N),

in a way similar to [, Proposition .].

Using the above estimates, we can write

Avgh

f∈Bk(N)

(g( f , s, z)g( f , s, z′)) =
∑

f∈Bk(N)

ω( f )
∑
n,m

n−s̄m−slz(n)lz′(m) =

=
∑
n,m

n−s̄m−s
∑

f∈Bk(N)

ω( f )lz(n)lz′(m) =

=
∑
n,m

n−s̄m−s
∑

x∈JN (n), y∈JN (m)

cN
z,x

(n)cN
z′, y

(m)
∑

f∈Bk(N)

ω( f )η f (x)η f ( y)+

=
∑
n,m

n−s̄m−s
∑

x∈JN (n), y∈JN (m)
(xy,N)=1

cN
z,x

(n)cN
z′, y

(m)
�
δ(x, y)

ϕ(N)

N
+∆(x, y)

�
=

+
∑
n,m

n−s̄m−s
∑

x∈JN (n), y∈JN (m)
(xy,N)6=1

cN
z,x

(n)cN
z′, y

(m)
∑

f∈Bk(N)

ω( f )η f (x)η f ( y) =

=
ϕ(N)

N

∑
n,m

n−s̄m−s
∑

x∈JN (n)∩JN (m)
(x,N)=1

cN
z,x

(n)cN
z′,x(m)+

+
∑
n,m

n−s̄m−s
∑

x∈JN (n), y∈JN (m)
(xy,N)=1

cN
z,x

(n)cN
z′, y

(m)∆(x, y)+

+
∑
n,m

n−s̄m−s
∑

x∈JN (n), y∈JN (m)
(xy,N)6=1

cN
z,x

(n)cN
z′, y

(m)S(x, y).
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The fact that the sum can be subdivided into three parts will be justified

by the absolute convergence of the series for Re s large enough.

Put
eM(s) =

∑
n,m

n−s̄m−s
∑

x∈JN (n)∩JN (m)
(x,N)=1

cN
z,x

(n) cN
z′,x(m).

Let us first note that the sum does not depend on N , since cN
z,x

(n)= cz,x(n)

if (n, N)= 1, and the coefficient cN
z,x

(n) vanishes, once we have both

(x, N)=1, and (n, N) 6=1. This allow us to write

eM(s) =
∑
n,m

n−s̄m−s
∑

x∈J(n)∩J(m)
(nm,N)=1

cz,x(n) cz′,x(m).

Our goal is to verify that eM(s) gives the principal term of the asymp-

totic behaviour of Avgh

f∈Bk (N)

(g( f , s, z)g( f , s, z′)). If m /∈ I(n), which is equiv-

alent to I(m) 6= I(n), the term cz,x(n) cz′,x(m) vanishes. Therefore,

eM(s) =
∑

n∈N, (nm,N)=1
m∈I(n)

n−s̄m−s
∑

x∈J(n)∩J(m)

cz,x(n) cz′,x(m).

Let us define r−(n) to be the largest integer whose square divides n,

and r+(n) to be the least positive integer whose square is divisible by n.

So, if n= p
k1

1
…p

kl

l
, we have

n = p
k1mod 2

1 …p
klmod 2

l
r−(n)2, r+(n)2

= p
k1mod 2

1 …p
kl mod 2

l
n,

and the squarefree part of n is equal to

p
k1mod 2

1
…p

klmod 2

l
=

r+(n)

r−(n)
.

Using this notation, we can write for s=σ+ it

eM(s) =
∑
n¾1

∑
r¾1

n−σ+it
� r+(n)

r−(n)

�−σ−it

r−2s
∑

x∈J(n)∩J(m)
(mn,N)=1

cz,x(n)cz′,x

� r+(n)r2

r−(n)

�
=

=
∑

n,r¾1

r+(n)−2σr−(n)2itr−2s
∑

x∈J(n)∩J(m)
(mn,N)=1

cz,x(n)cz′,x

� r+(n)r2

r−(n)

�
, ()

where m=
r+(n)r2

r−(n)
, so

| eM(s)| ¶
∑

n,r¾1

(r+(n))−2σr−2σ
∑

x∈J(n)
(nr,N)=1

|cz,x(n)|
���cz′,x

� r+(n)r2

r−(n)

����.
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There are 2ω(n) − 1= 2l − 1 different n giving the same r+(n). As

ω(n)≪ log n

2+ log log n
by (), so 2l≪ǫ nǫ, using Lemma . and () we see

that the sum eM(s) converges absolutely for Re s>1/2:

| eM(s)| ≪ǫ

∑
n,r¾1

nǫ ·n−2σ · r−2σ ·nǫ ·nǫ · r2ǫ ·nǫ =
∑
n¾1

n−2σ+4ǫ
∑
r¾1

r−2σ+2ǫ.

Let us now see what happens with the error term. If we put

∆(s) =
∑

n,m¾1

n−s̄m−s
∑

x∈JN (n), y∈JN (m)
(xy,N)=1

cN
z,x

(n) cN
z′, y

(m)∆(x, y),

from the Proposition . together with the estimate τ3(n)¶τ(n)3≪ǫ nǫ,

and Lemma . we conclude that

|∆(s)| ≪ǫ

τ(N)2 log N

Nk5/6

∑
m,n¾1

(mn)−σ+
1

4
+ǫ.

In a similar way, putting

∆
′(s) =

∑
n,m¾1

n−s̄m−s
∑

x∈JN (n), y∈JN (m)
(xy,N)6=1

cN
z,x

(n) cN
z′, y

(m)S(x, y),

we get

|∆′(s)| ≪ǫ
1p

pmin(N)

�ϕ(N)

N
+O

�τ(N)2 log(2N)

Nk5/6

�� ∑
m,n¾1

(mn)−σ+ǫ,

where pmin(N) is the least prime factor of N .

These bounds only make sense for σ=Re s> 5/4, when the series

converge. For these values of s we conclude that the error terms tend to

0, once pmin(N)→∞ (recall that we assume N to be squarefree). In the

next section we are going to show how the estimates can be pushed to

the left of Re s>5/4.

5.2. Integral representation

We introduce the following notation. Let 0<ǫ′<ǫ <
1
2

, s∈C with

σ= Re s¾
1
2
+ ǫ, c>max(0, 1−σ), X ¾ 1 a parameter to be specified

later. The symbol≪ will depend on ǫ, R, and T but this dependence will

not be explicitly indicated. As before, we assume only that N is square-

free (and not necessarily prime), and we do not suppose k to be fixed.

We will write g to denote g( f , s, z) when no ambiguity is possible.
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We use the techniques from [], though it would be possible to em-

ploy the approximate functional equations instead, since they are avail-

able in our case. First, we establish the analogues of the propositions

proven in [, § .].

Lemma .. (i) For Re s¾
1
2
+ǫ we have g=g+−g−, where the holo-

morphic functions g+ and g− are defined by

g+( f , s, z, X) =
1

2πi

Í

Re w=c

Γ(w)g( f , s+w, z)X wdw,

and

g−( f , s, z, X) =
1

2πi

Í

Re w=ǫ′−ǫ

Γ(w)g( f , s+w, z)X wdw.

(ii) The function g+ has a Dirichlet series expansion

g+ =
∞∑

n=1

lz(n)e−
n

X n−s

which is absolutely and uniformly convergent on compacts in C.

Proof. The first statement admits exactly the same proof as the cor-

responding part of [, Proposition ..] with Ihara and Matsumoto’s

property (A) being replaced by Lemma . in our case.

As for the second statement, we have the Dirichlet series expansion

g( f , s, z) =
∞∑

n=1

lz(n)n−s.

Taking into account that σ+ c>1, we see that

g( f , s+w, z) =
∞∑

n=1

lz(n)n−s−w

is absolutely and uniformly convergent with respect to Im w on Re w= c.

Exchanging the integration and summation and using

1

2πi

Í

Re w=c

Γ(w)a−wdw = e−a,

we obtain the desired expansion. The absolute and uniform convergence

is clear for Lemma ..

In what follows we will estimate g+ on average, which will give the

main term, the function g− will on the contrary be estimated individually

for each f . The following lemma bounds g− in terms of the parameter X .
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Lemma .. Let Re s¾ 1/2+ ǫ. Then for any f ∈ Bk(N), 0<ǫ′ <ǫ,

T >0, for | Im(s)|¶T we have

|g−( f , s, z, X)| ≪ǫ′ (NkX)ǫ
′
X−ǫ.

Proof. Once again our proof largely mimics that of [, Proposi-

tion ..]. We need to estimate the integral

g−( f , s, z, X) =
1

2πi

Í

Re w=ǫ′−ǫ

Γ(w)g( f , s+w, z)X wdw.

Clearly, |X w |= X ǫ
′−ǫ and it is well-known [, (..)] that

Γ(w)≪ | Im w|c−1/2 exp
�
−π

2
| Im(w)|

�
,

when | Im w|¾1, Re w¶ c, so in our case Γ(w)≪ exp(−| Im(w)|). Lem-

ma . ensures that, putting u= Im(w) and t= Im(s), we have

log |g( f , s+w, z)| ≪ ℓ(kN)1−2ǫ′ℓ(t+u)1−2ǫ′ .

Therefore, there exists C=C(T , ǫ′) such that

|g( f , s+w)| ¶ exp
�
Cℓ(Nk)1−2ǫ′(log(|u|+1))1−2ǫ′

�
¶

¶ exp
�
Cℓ(Nk)1−2ǫ′ log(|u|+1)

�
.

So, by comparison with the Γ-integral, we have

|g−( f , s+w, z, X)| ≪ X ǫ
′−ǫ

+∞Í

0

e−u(u+1)Cℓ(Nk)1−2ǫ′
du≪

≪ X ǫ
′−ǫ
Γ(Cℓ(Nk)1−2ǫ′

+1)≪
≪ X ǫ

′−ǫ exp(Cℓ(Nk)1−2ǫ′ log(Cℓ(Nk)1−2ǫ′))≪
≪ X ǫ

′−ǫ exp(C ′ℓ(Nk)1−2ǫ′ log(ℓ(Nk)))≪
≪ǫ′ X ǫ

′−ǫ exp(ǫ′ℓ(Nk))≪ X ǫ
′−ǫ(Nk)ǫ

′
,

since for Nk large enough depending on T and ǫ′,

C ′ℓ(Nk)−2ǫ′ log(ℓ(Nk)) < ǫ′

holds.
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5.3. Averaging

We now go back to averaging over primitive forms. We denote for

simplicity g=g(s, f , z), g′=g(s, f , z′) and we adopt similar notation for

g± and g′±.

First of all, using the decomposition established in Section ., we

note that

Avgh

f∈Bk(N)

(gg′) =

= Avgh

f∈Bk(N)

(g+g′
+

)− Avgh

f∈Bk(N)

(g+g′−)− Avgh

f∈Bk (N)

(g−g′
+

)+ Avgh

f∈Bk(N)

(g−g′−).

Our first goal is to prove that the average

Avgh

f∈Bk (N)

(g+g′
+

) =
∑

f∈Bk(N)

ω( f )
∑

n,m¾1

n−s̄m−slz(n)lz′(m)e−
n+m

X .

gives the main term of the asymptotic behaviour. The calculations of

Section . allow us to decompose the above average as follows:

Avgh

f∈Bk(N)

(g+g′
+

) = eM(s, X)+∆(s, X)+∆′(s, X), ()

with

eM(s, X) =
ϕ(N)

N

∑
n,m

n−s̄m−se−
n+m

X

∑
x∈JN (n)∩JN (m)

(x,N)=1

cN
z,x

(n) cN
z′,x(m),

∆(s, X) =
∑
n,m

n−s̄m−se−
n+m

X

∑
x∈JN (n), y∈JN (m)

(xy,N)=1

cN
z,x

(n) cN
z′, y

(m)∆(x, y),

∆
′(s, X) =

∑
n,m

n−s̄m−se−
n+m

X

∑
x∈JN (n), y∈JN (m)

(xy,N)6=1

cN
z,x

(n) cN
z′, y

(m)S(x, y).

Noting that 0<1− e−a<min(a, 1) and fixing any α>0, we see that

| eM(s)− eM(s, X)| =

=
ϕ(N)

N

����
∑
n,m

n−s̄m−s(1− e−
n+m

X )
∑

x∈JN (n)∩JN (m)
(x,N)=1

cN
z,x

(n)cN
z′,x(m)

���� ¶

¶
ϕ(N)

N

∑
n¶αX
m¶αX

n−σm−σ
n+m

X

∑
x∈JN (n)∩JN (m)

(x,N)=1

|cN
z,x

(n)||cN
z′,x(m)|+

+
ϕ(N)

N

∑
n¾αX

or
m¾αX

n−σm−σ(1− e−
n+m

X )
∑

x∈JN (n)∩JN (m)
(x,N)=1

|cN
z,x

(n)||cN
z′,x(m)|.
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The calculations of Section . together with the observation that (in the

notation of ()) r2r+(b)2
=mn result in the following bound valid for

any ǫ′′>0:

∑
n¾αX

or
m¾αX

n−σm−σ(1− e−
n+m

X )
∑

x∈JN (n)∩JN (m)
(x,N)=1

|cN
z,x

(n)||cN
z′,x(m)| ≪ǫ′′

≪ǫ′′
∑

(rs)2¾αX

(rs)−2σ+ǫ′′ ≪ǫ′′
∑

r¾
p
αX

r−2σ+ǫ′′ ≪ǫ′′ (αX)1/2−σ+ǫ′′/2,

while the absolute convergence of the series for eM(s) implies
∑

n¶αX
m¶αX

n−σm−σ
n+m

X

∑
x∈JN (n)∩JN (m)

(x,N)=1

|cN
z,x

(n)||cN
z′,x(m)| ≪ α.

Taking ǫ′′ small enough so that β=1/2−σ+ǫ′′/2<0 and α satisfying

α= (αX)β , we finally see that

| eM(s)− eM(s, X)| ≪ǫ′′
ϕ(N)

N
X

1/2−σ+ǫ′′/2

1/2+σ−ǫ′′/2 ¶
ϕ(N)

N
X ǫ

′′/2−ǫ. ()

Now, let us turn to the second and the third terms in (). Once

again, applying the estimates from Section . we see that for any ǫ′′>0

|∆(s, X)| ≪ǫ′′
τ(N)2 log N

Nk5/6

∑
m,n¾1

(mn)−σ+
1

4
+ǫ′′e−

m+n

X ,

|∆′(s, X)| ≪ǫ′′

≪ǫ′′
1p

pmin(N)

�
ϕ(N)

N
+O

�
τ(N)2 log(2N)

Nk5/6

�� ∑
m,n¾1

(mn)−σ+ǫ
′′
e−

m+n

X .

Bounding the sums via the corresponding improper integrals (cf. [,

proof of Proposition ..]), we get

|∆(s, X)| ≪ǫ′′
τ(N)2 log N

Nk5/6
X 3/2+2ǫ′′−2ǫ, ()

|∆′(s, X)| ≪ǫ′′
1p

pmin(N)

�ϕ(N)

N
+O

�τ(N)2 log(2N)

Nk5/6

��
X 1+2ǫ′′−2ǫ. ()

In what follows, we will choose X (as a function of N) in such a

way that the right-hand sides in (), (), and () tend to 0. With this

choice of X , taking z= z′ and using the absolute convergence of eM(s),

we obtain

Avgh

f∈Bk(N)

|g+|2 ≪ǫ′′ 1, Avgh

f∈Bk(N)

|g′
+
|2 ≪ǫ′′ 1
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Let us estimate the remaining terms involving g− and g′−. By Lem-

ma . and ()

Avgh

f∈Bk(N)

|g−|2 ≪ǫ′,T (NkX)2ǫ′ X−2ǫ
∑

f∈Bk (N)

ω( f ) ¶

¶
�ϕ(N)

N
+O

�τ(N)2 log(2N)

Nk5/6

��
(NkX)2ǫ′ X−2ǫ.

We apply the Cauchy––Schwartz to get

| Avgh

f∈Bk(N)

(g+g′−)|+ | Avgh

f∈Bk (N)

(g−g′
+

)|+ | Avgh

f∈Bk(N)

(g−g′−)| ≪

≪ǫ′

�ϕ(N)

N
+O

�τ(N)2 log(2N)

Nk5/6

��
(NkX)2ǫ′ X−ǫ, ()

since (NkX)2ǫ′ ¾ (NkX)ǫ
′

and X−2ǫ¶ X−ǫ.
Let us now turn to the case considered in the theorem, by assuming

that k is fixed and N= p is prime. Assuming that ǫ′′<2ǫ, we have

| eM(s)− eM(s, X)| ≪ǫ′′ X ǫ
′′/2−ǫ,

|∆(s, X)| ≪ǫ′′
log p

p
X 3/2+2ǫ′′−2ǫ,

|∆′(s, X)| ≪ǫ′′
1p

p
X 1+2ǫ′′−2ǫ,

| Avgh

f∈Bk(N)

(g+g′−)|+ | Avgh

f∈Bk(N)

(g−g′
+

)|+ | Avgh

f∈Bk (N)

(g−g′−)| ≪ǫ′,k p2ǫ′ X 2ǫ′−ǫ.

Taking X = p1/2, we see that the above bounds lead to
��� Avgh

f∈Bk (N)

g( f , s, z)g( f , s, z′)− eM(s)

���≪δ p−ǫ/2+δ,

where δ, which depends on ǫ′ and ǫ′′, can be taken arbitrarily small.

The second part of the theorem follows from the first.

6. Open Questions and Remarks

This section is devoted to a series of questions and remarks to com-

plement the results of the paper. We hope to address at least some of

them in subsequent articles. We start by the topics discussed in Section .

Question .. Can Theorem . be proven in a greater generality?

For example, one can consider L-functions of more general automor-

phic cusp forms and the average taken with respect to their twists by Hecke

characters of imaginary quadratic number fields or algebraic function
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fields with a fixed place at infinity. As indicated in [], going beyond

imaginary quadratic number fields seems to be tricky since it involves

essentially new problems related to the presence of non-trivial units. One

can also consider averages over quadratic characters in the spirit of [].

Question .. What is a version of Theorem . without assuming

GRH?

The unconditional results [, Theorem ] and [, Theorem .]

suggest that it should be possible to prove similar statements in our case.

Question .. Prove an analogue of Theorem . for modular forms

in the other situations within the framework of the cases (A), (B), (C)

discussed in the introduction.

Some results in this direction were established by Mastsumoto in

[] in the case (C), that is, the equidistribution of L( f ,σ+ it), when

σ is fixed and t∈R varies. It seems, however, that, even when consider-

ing averages of Dirichlet L-functions conditionally on GRH, this question

has not been fully investigated, the most advanced results having been

obtain only in the case (A).

Question .. Carry out a more in-depth study of the functions M

and eM.

In the case of Dirichlet characters this was done in [], []. One

should be able to write down an explicit power series expansion of
eMs(z1, z2) in the variables z1, z2, establish its analytic continuation, study

its growth, its zeroes, etc.

We next switch to the case of averages with respect to primitive

forms of Section , where the results are far less complete.

Question .. Can one obtain Theorem . with weaker assump-

tions on N? Can we let k tend to infinity, while N is fixed? Can we let

k+N→∞?

By following carefully the proof of Theorem ., one can see that the

limit statement is still true when N = 1 and k→∞. Indeed, in this case

∆
′ is not present and the parameter X cas be chosen to be equal to k1/2.

This suggests that some greater generality should be possible. The idea

would be to use better bounds on averages of the Fourier coefficients of

cusp forms with indices not coprime with N , which should be possible

by a careful treatement of an explicit basis of the space of old forms in

the spirit of [].

Question .. Prove an unconditional version of Theorem ..

Surprisingly enough, a crude reasoning with Euler products does not

seem to work even for Re s>1. An unconditional version for Re s>1/2
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will certainly be tricky to obtain even if one only considers charactersψz

as in[] and [].

Question .. Is it possible to establish value distribution results in

the case of harmonic averages over the set of primitive forms?

The reason we could not carry out the study analogous to that of

Section  is the absence of a local theory (at least in a straight-forward

way). Indeed, the eMs do not seem to admit an Euler product in this case.

One could hope to rely on the interpretation of ω( f ) via the symmetric

square L-functions (), though there does not seem to be an easy way

to do that.

Question .. Can one remove the harmonic weights in Theorem

.?

At least two approaches are available. The papers [], [], []

address a similar issue in different situations by using the interpretation

() of the weights via L(Sym2 f , 1).

A more conceptual way would be to construct the local theory first.

The results of Serre [] on the equidistribution of the eigenvalues of

Hecke operators Tp suggest that the local picture should be fairly clear.

This would allow to establish the value distribution results missing in

the case of harmonic averages. We plan to address this question in a

forthcoming paper.

Question .. Can one prove Theorem . in greater generality for

other types of automorphic forms?

The first obvious step would be establishing it for L( f ⊗ χ, s). For

more general L-functions an appropriate trace formula would be neces-

sary to replace Petersson formula.

Question .. What is a function field version of Theorem .?

The GRH being known in this case, unconditional results should not

be very difficult to establish along the lines of this paper, once proper

definitions are given.

Question .. Establish the properties of eM functions in the case

of averages with respect to primitive forms.

Some peculiarities do arise compared to the case of characters. For

example, eMs(z1, z2) is no longer holomorphic in s, since the average does

depend on s and s̄. The function is still entire in z1, z2 for fixed s. Es-

tablishing its explicit power series expansion, analytic continuation, etc.

seems to be of interest. The growth properties of eM seem to be much

more delicate in our case, since they are proven using local results in the

situation of Ihara and Matsumoto.
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Question .. Write an adelic version of Ihara’s and Matsumoto’s

results, as well as of our results in the setting of modular forms.

This might shed some light on and give a better understanding of the

functions M , eM, as well as of the relation of the global theory to the local

one. One might also hope to be able to deal with the problems related to

units in the number field case (cf. Question .).

Question .. What are the arithmetic implications of our results?

The results of Ihara and Matsumoto give us a better understanding

of the behaviour of the Euler––Kronecker constants of cyclotomic fields.

More generally, since the log case of averaging results for Q concerns, in

particular, zeta functions of cyclotomic fields ζQ(ζm)(s), which are simply

the products of L(s,χ) over primitive Dirichlet characters of conductors

dividing m, the results of Ihara and Matsumoto can be seen as a first step

in the development of a finer version of the asymptotic theory of global

fields from [], that gives non-trivial results for abelian extensions. This

is not the case in [], since infinite global fields, containing infinite

abelian subfields are asymptotically bad in the terminology of loc. cit.

When one takes averages with respect to primitive forms, the results

are close in spirit to the asymptotic study of zeta functions (see [] for

their definition) of modular curves X0(N), which can be written as

ζX0(N)(s) =
∏

f∈B2(N)

L( f , s)

(this function is the normalized L-function of the Jacobian variety of

X0(N)). Establishing a precise relation boils down to answering Ques-

tion ..

Note that even a cruder version of the asymptotic theory in the spirit

of [] has not been developed in this case. In the function field case this

was to a significant extent done in []. A higher dimensional asymptotic

theory in the characteristic zero case is yet to be constructed.
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Dense families of modular curves, prime

numbers and uniform symmetric tensor rank

of multiplication in certain finite fields

(with S. Ballet)

Abstract. We obtain new uniform bounds for the symmetric tensor

rank of multiplication in finite extensions of any finite field Fp or Fp2

where p denotes a prime number¾5. In this aim, we use the symmetric

Chudnovsky-type generalized algorithm applied on sufficiently dense

families of modular curves defined over Fp2 attaining the Drinfeld––

Vladuts bound and on the descent of these families to the definition

field Fp. These families are obtained thanks to prime number density

theorems of type Hoheisel, in particular a result due to Dudek ().

1. Introduction

1.1. Notation

Let Fq be a finite field with q elements where q is a prime power and

let Fqn be an Fq-extension of degree n. The multiplication of two ele-

ments of Fqn is an Fq-bilinear map from Fqn ×Fqn onto Fqn . It can be con-

sidered as an Fq-linear map from the tensor product Fqn ⊗Fq
Fqn onto Fqn .

Consequently it can be also viewed as an element T of F⋆
qn ⊗Fq
F⋆

qn ⊗Fq
Fqn

where F⋆
qn denotes the dual of Fqn . More precisely, when T is expressed

as

T =
r∑

i=1

x⋆
i
⊗ y⋆

i
⊗ ci, ()

where x⋆
i
∈F⋆

qn, y⋆
i
∈F⋆

qn and ci ∈Fqn, the following holds for any x, y ∈Fqn:

x · y = T(x⊗ y) =
r∑

i=1

x⋆
i
(x) y⋆

i
( y)ci.

Stéphane Ballet, Alexey Zykin, Dense families of modular curves, prime numbers and

uniform symmetric tensor rank of multiplication in certain finite fields, Designs, Codes and

Cryptography,  (), ––.
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Definition . The minimal number of summands in a decomposi-

tion of the multiplication tensor T is called the tensor rank of the multi-

plication in the extension field Fqn (or bilinear complexity of the multi-

plication) and is denoted by µq(n):

µq(n) = min

§
r | T =

r∑
i=1

x⋆
i
⊗ y⋆

i
⊗ ci

ª
.

It is known that the tensor T can have a symmetric decomposition:

T =
r∑

i=1

x⋆
i
⊗ x⋆

i
⊗ ci. ()

Definition . The minimal number of summands in a symmetric de-

composition of the multiplication tensor T is called the symmetric tensor

rank of the multiplication (or the symmetric bilinear complexity of the

multiplication) and is denoted by µsym
q

(n):

µsym
q

(n) = min

§
r | T =

r∑
i=1

x⋆
i
⊗ x⋆

i
⊗ ci

ª
.

From an asymptotical point of view, let us define the following

Msym
q
= lim sup

k→∞

µsym
q

(k)

k
, ()

msym
q
= lim inf

k→∞

µsym
q

(k)

k
. ()

1.2. Known results

The original algorithm of D. V. and G. V. Chudnovsky introduced in

[] is symmetric by definition and leads to the following results from

[], [] and []:

Theorem . Let q be a prime power and let n> 1 be an integer. Let

F/Fq be an algebraic function field of genus g and Nk be the number of

places of degree k in F/Fq. Suppose F/Fq is such that 2g+1¶ q
n−1

2 (q
1

2 −1)

then:

i) if N1>2n+2g−2, then

µsym
q

(n) ¶ 2n+ g−1,

ii) if N1+2N2>2n+2g−2 and there exists a non-special divisor of

degree g−1, then

µsym
q

(n) ¶ 3n+2g.
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Theorem . Let q be a power of a prime p and let n be an integer.

Then the symmetric tensor rank µsym
q

(n) is linear with respect to the ex-

tension degree; more precisely, there exists a constant Cq such that for any

integer n>1,

µsym
q

(n) ¶ Cqn.

From different versions of symmetric algorithms of Chudnovsky type

applied to good towers of algebraic function fields of type Garcia––Stichte-

noth attaining the Drinfeld––Vladuts bounds of order one, two or four,

different authors have obtained uniform bounds for the tensor rank of

multiplication, namely general expressions for Cq, such as the following

best currently published estimates:

Theorem . Let q= pr be a power of a prime p and let n be an integer

>1. Then:

(i) If q=2, then µsym
q

(n)¶15.46n (cf. [, Corollary ] and []);

(ii) If q=3, then µsym
q

(n)¶7.732n (cf. [, Corollary ] and []);

(iii) If q¾4, then µsym
q

(n)¶3

�
1+

4
3

p

q−3+2(p−1)
q

q+1

�
n (cf. []);

(iv) If p¾5, then µsym
p

(n)¶3
�

1+
8

3p−5

�
n (cf. []);

(v) If q¾4, then µ
sym

q2 (n)¶2

�
1+

p

q−3+(p−1)
q

q+1

�
n (cf. [] and []);

(vi) If p¾5, then µ
sym

p2 (n)¶2

�
1+

2

p− 33

16

�
n (cf. []).

1.3. New results

The main goal of the paper is to improve the upper bounds for

µsym
q

(n) from the previous theorem for the assertions concerning the

extensions of finite fields Fp2 and Fp where p is a prime number. One of

main ideas used in this paper was introduced in [] by the first author

thanks to the use of the Chebyshev Theorem (or also called the Bertrand

Postulat) to bound the gaps between prime numbers. More precisely, the

aim was to construct families of modular curves {Xi} with increasing

genus gi attaining the Drinfeld-Vladut bound as dense as possible. This

means that these families of modular curves have the maximum possible

ratio of the number of Fp2 -rational points to the genus and such that the

sequence of their genera is as dense as possible, namely lim
i→∞

gi+1

gi
= 1.
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Later, motivated by [], the approach of using such bounds on gaps

between prime numbers (e.g. Baker-Harman-Pintz) was also used in the

preprint [] in order to improve the upper bounds of µ
sym

p2 (n) where p is

a prime number. In our paper, we improve all the known uniform upper

bounds for µ
sym

p2 (n) and µsym
p

(n) for p¾ 5. This article is an expansion

of a paper which was presented at The Tenth International Workshop on

Coding and Cryptography (WCC) [].

2. New upper bounds

In this section, we give new better upper bounds for the symmetric

tensor rank of multiplication in certain extensions of finite fields Fp2 and

Fp. In order to do that, we construct suitable families of modular curves

defined over Fp2 and Fp. In this aim, we need explicit prime number

density theorems, usually called theorems of type Hoheisel. In particular,

by a result of Baker, Harman and Pintz [, Theorem ] established in

 and by a recent result established by Dudek [] in , we directly

deduce the following result:

Theorem . Let lk be the k-th prime number. Then there exist real

numbers α< 1 and xα such that the difference between two consecutive

prime numbers lk and lk+1 satisfies

lk+1− lk ¶ lα
k

for any prime lk¾ xα.

In particular, one can take α=
21
40

with the value of xα that can in

principle be determined effectively, or α=
2
3

with xα=exp(exp(33.217)).

Proof. It is known that there exists a real number xα such that for all

x> xα, the interval [x− xα, x] with α=
21
40

contains prime numbers by a

result of Baker, Harman and Pintz [, Theorem ]. In particular, if lk> xα
denotes the k-th prime number, it means that the interval [lk, lk + lα

k
]

contains the k+1-th prime number lk+1. Moreover, the value of xα can

in principle be determined, according to the authors. However, to our

knowledge, this computation has not been realized yet.

For a bigger α=
2
3

, Dudek obtained recently in [, Theorem .] an

explicit bound xα¾exp(exp(33.217)). More precisely, Dudek proves that

there exists a prime between cubes, namely the interval [n3, (n+ 1)3]

contains a prime number for sufficiently large numbers n. From this
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result, we can directly deduce that there exists a prime in the inter-

val [x, x + 3x
2

3 ] for all sufficiently large x. Moreover, he makes the

result explicit, in that he determines numerically a lower bound for

which this result is valid, namely for x ¾ exp(exp(33.217)). Then, if

we put [x, x + 3x
2

3 ]= [x, x + xα], we deduce that α=
2
3
+ ǫ with ǫ <

<
ln 3

exp(exp(33.217))
for any x>exp(exp(33.217)).

2.1. The case of the quadratic extensions of prime fields

Proposition . Let p¾ 5 be a prime number, and let xα be the con-

stant from Theorem .

(i) If p 6=11, then for any integer n¾
p−3

2
xα+

p+1

2
we have

µ
sym

p2 (n) ¶ 2
�

1+
1+ǫp(n)

p−3

�
n−

(1+ǫp(n))(p+1)

p−3
−1,

where ǫp(n)=
�

2n

p−3

�α−1
.

(ii) For p=11 and n¾ (p−3)xα+ p−1=8xα+10 we have

µ
sym

p2 (n) ¶ 2
�

1+
1+ǫp(n)

p−3

�
n−

2(1+ǫp(n))(p−1)

p−3
,

where ǫp(n)=
�

n

p−3

�α−1
.

(iii) Asymptotically the following inequality holds for any p¾5:

M
sym

p2 ¶ 2
�

1+
1

p−3

�
.

Proof. First, let us consider the characteristic p such that p 6= 11.

Then it is known ([, Corollary ..] and [, proof of Theorem .])

that the modular curve Xk= X0(11lk), where lk is the k-th prime number,

is of genus gk= lk and satisfies

N1(Xk(Fp2 )) ¾ (p−1)(gk+1),

where N1(Xk(Fp2 )) denotes the number of rational points over Fp2 of

the curve Xk. Let us consider an integer n > 1. Then there exist two

consecutive prime numbers lk and lk+1 such that

(p−1)(lk+1+1) > 2n+2lk+1−2 ()

and

(p−1)(lk+1) ¶ 2n+2lk−2 ()
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(here we use the fact that p¾5). Let us consider the algebraic function

field Fk+1/Fp2 associated to the curve Xk+1 of genus lk+1 defined over

Fp2 . Denoting by Ni(Fk/Fp2 ) the number of places of degree i of Fk/Fp2 ,

we get

N1(Fk+1/Fp2 ) ¾ (p−1)(lk+1+1) > 2n+2lk+1−2.

We also know that lk+1− lk¶ lα
k

, when lk¾ xα by Theorem . Thus

lk+1¶ (1+ǫ(lk))lk, with ǫ(lk)= lα−1
k

. It is easy to check that the inequal-

ity 2g+1¶ q
n−1

2 (q
1

2 −1) of Theorem  holds for any prime power q¾5.

Indeed, it is enough to verify that

qlk
p−3

4
+

p−1

4 (q
1

2 −1) ¾ 2(1+ǫ(lk))lk+1,

which is true since

qx
p−3

4
+

p−1

4 (q
1

2 −1)−4x−1 ¾ 0

for any x¾0.

Thus, for any integer n¾
p−3

2
xα+

p+1

2
the function field Fk+1/Fp2

satisfies Theorem , so

µ
sym

p2 (n) ¶ 2n+ lk+1−1 ¶ 2n+ (1+ǫ(lk))lk−1,

with lk¶
2n

p−3
− p+1

p−3
by ().

Let us remark that, as lk ¶
2n

p−3
, ǫ(lk)¶ ǫp(n)= (

2n
p−3

)α−1, which

gives the first inequality. Now, let us consider the characteristic p=11.

Take the modular curve Xk= X0(23lk), where lk is the k-th prime num-

ber. By [, Proposition ..], we easily compute that the genus of Xk is

gk=2lk+1. It is also known that the curve Xk has good reduction modu-

lo p outside 23 and lk. Moreover, by using [, Proof of Theorem ..],

we obtain that the number of Fp2 -rational points over of the reduction

Xk/p modulo p satisfies

N1(Xk(Fp2 )) ¾
µN (p−1)/12

degλN
¾ 2(p−1)(lk+1)

in the notation of loc. cit. Let us take an integer n> 1. There exist two

consecutive prime numbers lk and lk+1 such that

2(p−1)(lk+1+1) > 2n+2(2lk+1+1)−2

and

2(p−1)(lk+1) ¶ 2n+2(2lk+1)−2,
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i. e.
(p−1)(lk+1+1) > n+2lk+1 ()

and
(p−1)(lk+1) ¶ n+2lk. ()

Let us consider the algebraic function field Fk+1/Fp2 associated to the

curve Xk+1 of genus gk+1=2lk+1+1 defined over Fp2 . We have

N1(Fk+1/Fp2 ) ¾ 2(p−1)(lk+1+1) > 2n+4lk+1.

As before lk+1 ¶ (1+ ǫ(lk))lk, with ǫ(lk)= lα−1
k

. It is also easy to

check that the inequality 2g+1¶ q
n−1

2 (q
1

2 −1) of Theorem  holds when

q is a power of 11, which follows from the fact that

114lk+
9

2 (11
1

2 −1) ¾ 8lk+3.

Thus, for any integer n¾ (p− 3)xα+ p− 1, the algebraic function

field Fk+1/Fp2 satisfies Theorem , so

µ
sym

p2 (n) ¶ 2n+2lk+1 ¶ 2n+2(1+ǫ(lk))lk

with lk¶
n

p−3
− p−1

p−3
by ().

We remark that as lk¶
n

p−3
, ǫ(lk)¶ǫp(n)=

�
n

p−3

�α−1

, which gives

the second inequality of the proposition.

Finally, when n→+∞, the prime numbers lk→+∞, thus both for

p 6=11 and p=11 the corresponding ǫp(n)→0. So in the two cases we

obtain
M

sym

p2 ¶ 2
�

1+
1

p−3

�
.

Remark . It is easy to see that the bounds obtained in Proposition

 are generally better than the best known bounds (v) and (vi) recalled

in Theorem . Indeed, it is sufficient to consider the asymptotic bounds

which are deduced from them and to see that for any prime p¾ 5 we

have
1

p−3
<

p

p−3+ (p−1)
p

p+1

and
1

p−3
<

2

p− 33
16

respectively.

Remark . Note that the bounds obtained in [, Corollary ] also

concern the symmetric tensor rank of multiplication in the finite fields

even if it is not mentioned. Indeed, the distinction between µsym
q

(n) and

µq(n) was exploited only from []. So, we can compare our Proposi-

tion  with Corollary  there. Firstly, note that the bounds in [, Corol-

lary ] are only valid for p¾7. Moreover, the only bound which is better

than our bounds is the asymptotic bound [, Corollary , Bound (vi)]
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given for an unknown sufficiently large n, contrary to our uniform bound

with α=
2
3

for n¾ exp(exp(33.217)).

2.2. The case of prime fields

Proposition . Let p¾5 be a prime number, let xα be defined as in

Theorem , and ǫp(n) as in Proposition .

(i) If p 6=11, then for any integer n¾
p−3

2
xα+

p+1

2
we have

µsym
p

(n) ¶ 3

�
1+

4
3

(1+ǫp(n))

p−3

�
n−

2(1+ǫp(n))(p+1)

p−3
.

(ii) For p=11 and n¾ (p−3)xα+ p−1=8xα+10 we have

µsym
p

(n) ¶ 3

�
1+

4
3

(1+ǫp(n))

p−3

�
n−

4(1+ǫp(n))(p−1)

p−3
+1.

(iii) Asymptotically the following inequality holds for any p¾5:

Msym
p
¶ 3

�
1+

4

3

p−3

�
.

Proof. It suffices to consider the same families of curves as in the

proof of Proposition .

When p 6=11 we take Xk= X0(11lk), where lk is the k-th prime num-

ber. These curves are defined over Fp, hence, we can consider the as-

sociated algebraic function fields Fk/Fp defined over Fp and we have

N1(Fk/Fp2 )=N1(Fk/Fp)+ 2N2(Fk/Fp)¾ (p− 1)(lk+ 1), since Fk/Fp2 =

= Fk/Fp⊗Fp
Fp2 for any k. Note that the genus of the algebraic function

fields Fk/Fp is also gk= lk, since the genus is preserved under descent.

Given an integer n> 1, there exist two consecutive prime numbers

lk and lk+1 such that

(p−1)(lk+1+1) > 2n+2lk+1−2 ()

and

(p−1)(lk+1) ¶ 2n+2lk−2. ()

Let us consider the algebraic function field Fk+1/Fp associated to the

curve Xk+1 of genus lk+1 defined over Fp. We get

N1(Fk+1/Fp)+2N2(Fk+1/Fp) ¾ (p−1)(lk+1+1) > 2n+2lk+1−2.

As before lk+1¶ (1+ǫ(lk))lk, with ǫ(lk)= lα−1
k

, and from the proof of

the previous proposition we know that the inequality 2g+1¶q
n−1

2 (q
1

2 −1)
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of Theorem  holds. Consequently, for any integer n¾
p−3

2
xα+

p+1

2
,

the algebraic function field Fk+1/Fp satisfies Theorem , part ii) since by

[, Theorem  (i)] there always exists a non-special divisor of degree

gk+1−1 for p¾5. So

µsym
p

(n) ¶ 3n+2lk+1 ¶ 3n+2(1+ǫ(lk))lk

with lk¶
2n

p−3
− p+1

p−3
by (). As before, ǫ(lk)¶ǫp(n)= (

2n
p−3

)α−1.

When p=11 we use once again the family of curves Xk= X0(23lk).

They are defined over Fp, hence we can consider the associated algebraic

function fields Fk/Fp over Fp and we have

N1(Fk/Fp2 ) = N1(Fk/Fp)+2N2(Fk/Fp) ¾ 2(p−1)(lk+1).

The genus of the algebraic function fields Fk/Fp defined over Fp is also

gk=2lk+1 since the genus is preserved under descent.

Given an integer n> 1, there exist two consecutive prime numbers

lk and lk+1 such that

2(p−1)(lk+1+1) > 2n+2(2lk+1+1)−2

and

2(p−1)(lk+1) ¶ 2n+2(2lk+1)−2,

i. e.

(p−1)(lk+1+1) > n+2lk+1 ()

and

(p−1)(lk+1) ¶ n+2lk. ()

Let us consider the algebraic function field Fk+1/Fp associated to the

curve Xk+1 of genus gk+1=2lk+1+1 defined over Fp. We get

N1(Fk+1/Fp)+2N2(Fk+1/Fp) ¾

¾ 2(p−1)(lk+1+1) > 2n+2(2lk+1+1)−2.

As above lk+1 ¶ (1+ ǫ(lk))lk, with ǫ(lk)= lα−1
k

, and the inequality

2g+1¶ q
n−1

2 (q
1

2 −1) of Theorem  holds. Consequently, for any integer

n¾ (p−3)xα+ p−1, the algebraic function field Fk+1/Fp satisfies Theo-

rem , part ii) since, as before, there exists a non-special divisor of degree

gk+1−1 by [, Theorem  (i)]. So,

µsym
p

(n) ¶ 3n+2gk+1 ¶ 3n+2(2lk+1+1) ¶ 3n+2(1+ǫ)lk
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with lk¶
n

p−3
− p−1

p−3
by (). We can also bound

ǫ(lk) ¶ ǫp(n) =
�

n
p−3

�α−1
.

Finally, when n→+∞, the prime numbers lk→+∞, thus both for

p 6=11 and p=11, ǫp(n)→0. So we obtain M sym
p
¶3

�
1+

4/3

p−3

�
.

Remark . It is easy to see that the bounds obtained in Proposition

 are generally better than the best known bounds (iii) and (iv) recalled

in Theorem . Indeed, it is sufficient to consider the asymptotic bounds

which are deduced from them and to see that for any prime p¾ 5 we

have
4
3

p−3
<

4
3

p

p−3+
2(p−1)p

p+1

and
4/3

p−3
<

8
3p−5

respectively.
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